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Abstract— Addition of two binary numbers is a fundamental
operation in electronic circuits. Applications include arithmetic
logic unit, floating-point operations and address generation. It is
widely accepted that there is no single best adder implementation.
Modern adder architectures utilize a hybrid scheme based on,
among others, various parallel prefix, carry select and Ling
architectures.

The parallel prefix method implements logic functions which
determine whether groups of bits will generate or propagate a
carry. These functions are hierarchically combined to calculate
the carry into any bit. Ling adders reduce delay by using a sim-
plified version of the group generate. However, the method only
reduces complexity at the first level; all subsequent combinations
in the hierarchy have the same complexity as the parallel prefix
method. In this article we present novel architectures which have
reduced complexity at all levels.

I. INTRODUCTION

Addition of two binary numbers is the simplest and arguably
the most important of arithmetic operations. Consequently
much attention has been devoted to optimizing adder delay.
Several architectures have been proposed, examples include
carry-lookahead [9], conditional sum [8], carry-select [1],
parallel prefix [5], [6], [4] and Ling [7]. Modern adder
architectures utilize a hybrid scheme. The parallel prefix and
Ling methods share the property that the generate term is much
more complex than the propagate term, this provides some
hope of providing speedup. We are naturally led to the question
of whether there exist functions of more balanced complexity
each of which is simpler than the generate function. In this
article we shall show that this is indeed the case. We will
derive reduced generate functions which are a generalization
of the Ling pseudo carry.We will also find that these functions
have natural propagate counter parts, which we shall call
hyper propagate. The reduced generate and hyper propagate
functions are of similar complexity with each function being
of a lower complexity than the generate or pseudo carry
functions.
The article is focused on constructing the carry. We are cur-
rently investigating the families of adders that can be derived
from the reduced generate and hyper propagate functions.
The article is organized as follows. The next section outlines
and compares the parallel prefix and Ling approach to com-
puting the carry. We also isolate the two main ingredients in
Ling architectures, factorization to define the simpler generate,
pseudo-carry, and recursion to compute any carry in a tree
architecture. The third section shows that Ling’s factorization
is but one among many possible factorizations. Using these
new factorizations we show that there is a non-intuitive logic
equation for computing any carry. We also introduce the
reduced generate functions. In the fourth section we combine

the parallel prefix equation with the newly derived equation
to derive recursive formulation. This derivation naturally leads
us to hyper propagate functions. We also show that there are
recursion formulas for these. We then compare the complexity
of our functions with that of parallel prefix at various radices.
In the last section we give some examples.

II. PARALLEL PREFIX AND LING ADDERS

We will consider the addition of two binary numbers
xnxn−1 . . . x0 and ynyn−1 . . . y0. Also Fj:k signifies a func-
tion of the the bits xjxj−1 . . . xk and yjyj−1 . . . yk.

Parallel prefix architectures are based on two logic func-
tions, called generate and propagate. The first stage of the
adder forms bit-generate (g) and bit-propagate (p) functions
for each bit:

gi = xiyi, pi = xi + yi (1)

These functions are combined to form group generate and
group propagate functions according to the well known equa-
tions:

Gn:0 = Gn:k + Pn:kGk−1:0, Pn:0 = Pn:kPk−1:0 (2)

This is the binary tree method. Higher radix formulations are
possible, for ternary trees the equations are:

Gn:0 = Gn:k + Pn:kGk−1:k′ + Pn:kPk−1:k′Gk′−1:0,

Pn:0 = Pn:kPk−1:k′Pk′−1:0

(3)

The drawback of higher radix methods is that although the
number of combining levels is fewer, the complexity of the
logic functions at each level is greater.
Ling observed a variation of the above, which allows for
a speed up on the parallel prefix method. We will see that
our method is a generalization of Ling’s approach and so we
present it in some detail. Ling observed that if the delay of
the carry term could be reduced by increasing the delay of
some other term, the overall delay will be reduced as long
as the carry term is still on the critical path. There are two
components to Ling’s method. First, he defines a function of
lower complexity than the generate function. Ling noted that
every term in

Gn:0 = gn + pngn−1 + ... + pnpn−1...p1g0 (4)

contains pn except for the very first term, which is simply gn.
However, gn = pngn and so pn can be factored out of Gn:0

to create a pseudo-carry Hn:0, where

Gn:0 = pnHn:0, Hn:0 = gn + Gn−1:0 (5)

The function Hn:0 is simpler than the function Gn:0, the fan-in
of each AND-gate is reduced by one. The second ingredient
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of Ling’s method is recursion. Ling showed that the pseudo
carry Hj:i of a group could be constructed from the pseudo
carries Hj:k and Hk−1:i of sub groups:

Hj:i = gj + Gj−1:i

= gj + Gj−1:k + Pj−1:kGk−1:i

= [gj + Gj−1:k] + Pj−1:kpk−1[gk−1 + Gk−2:i]
= Hj:k + Pj−1:k−1Hk−1:i

(6)

The Ling adder does have the problem that to produce the
actual carry out, the pj and Hj:i need to be combined. This
extra delay can however be eliminated by noting that the
critical path for a n-bit adder is in producing the n − 1th

bit which can be expressed as:

sn−1 = xn−1 ⊕ yn−1 ⊕ Gn−2:0

= xn−1 ⊕ yn−1 ⊕ pn−2Hn−2:0

(7)

But pn−2 can be computed faster than Hn−2:0 and so a
multiplexer can be used:

sn−1 = Hn−2:0(xn−1 ⊕ yn−1)
+ Hn−2:0(xn−1 ⊕ yn−1 ⊕ pn−2)

(8)

Just as for the parallel prefix method, more than two groups
can be combined, for a ternary tree the pseudo carry equation
is:

Hj:i = Hj:k + Pj−1:k−1Hk−1:k′

+ Pj−1:k−1Pk−2:k′−1Hk′−1:i

(9)

We note that Ling’s method only reduces complexity at the
first level, we see that equation (6) is of the same complexity
as the generate function in equation (2) and the same holds
for higher radix architectures.

III. FACTORIZATIONS AND REDUCED GENERATE

FUNCTIONS

In this section we show that the Ling factorization is but
one of many possible. This will allow us to define reduced
generate functions, which are our counter parts to the Ling
pseudo carry. As an example we consider the function:

G4:0 = g4 + p4g3 + p4p3g2 + p4p3p2g1 + p4p3p2p1g0

= p4[g4 + g3 + p3g2 + p3p2g1 + p3p2p1g0]
= [g4 + p4p3][g4 + g3 + g2 + p2g1 + p2p1g0]
= [g4 + p4g3 + p4p3p2][g4 + g3 + g2 + g1 + p1g0]

(10)
The first equality is the Ling factorization, the bracketed
expression being the Ling pseudo carry. We will now see that
there is a general factorization, to describe this we need some
logic functions:

Dj:k = Gj:k + Pj:k

= Gj:k+1 + Pj:k

Bj:k = gj + gj−1 + ... + gk

(11)

In passing we note that the function Dj:k is high if the addition
xjxj−1 . . . xk +yjyj−1 . . . yk +1 produces a carry out and the
function Bj:k is high if a carry is generated in any bit position

in the range j : k. We leave it to the readers to convince
themselves that in general:

Gj:i = Dj:k[Bj:k + Gk−1:i] (12)

Note that if j − k = 1 then this equation reduces to the usual
Ling factorization. We thus have a whole host of reduced
complexity generate functions Bj:k + Gk−1:i which we shall
denote by R

(j−k+1)
j:i , the subscript indicates the input bits and

the superscript represents the range of B. Thus a Ling pseudo
carry would be represented as R

(1)
j:i , in our notation.

IV. RECURSION

The second ingredient of Ling’s formulation is recursion,
that is, a pseudo carry over a group can be constructed in
terms of pseudo carries over sub groups. We shall now see
that this is also possible for our reduced generate function. As
an example we will construct a radix three implementation,
higher radix implementations are also possible and we leave
their derivation to the reader. The derivation relies on both the
logic equations:

Gj:i = Dj:k[Bj:k + Gk−1:i] (13)

Gj:i = Gj:k + Pj:kGk−1:i (14)

Recall that we wish to construct a reduced generate function
over a group from reduced generate functions over subgroups.
We first divide the group of bits n − 1 : 0 into three “equal
sized” subgroups n − 1 : k, k − 1 : k′ and k′ − 1 : 0. We
further choose m and m′ to be “midpoints” of the second and
third groups respectively. Now consider the reduced generate
function:

R
(n−m)
n−1:0 = Bn−1:m + Gm−1:0 (15)

We first use equation (14) to decompose Gm−1:0. We thus
have:

R
(n−m)
n−1:0 = Bn−1:m + Gm−1:k′ + Pm−1:k′Gk′−1:0 (16)

We now note the Bn−1:m is simply an OR of bit-level
generates and so we can rewrite:

R
(n−m)
n−1:0 = [Bn−1:k] + [Bk−1:m + Gm−1:k′ ]

+ Pm−1:k′Gk′−1:0

(17)

The two bracketed terms are reduced generate functions, we
still need to eliminate the last generate function. We now make
use of equation (13):

Gk′−1:0 = Dk′−1:m′ [Bk′−1:m′ + Gm′−1:0] (18)

Substituting this into (17) we have:

R
(n−m)
n−1:0 = Bn−1:k + [Bk−1:m + Gm−1:k′ ]

+ [Pm−1:k′Dk′−1:m′ ][Bk′−1:m′ + Gm′−1:0]
(19)

which has the desired form:

R
(n−m)
n−1:0 = R

(n−k)
n−1:k + R

(k−m)
k−1:k′ + [Pm−1:k′Dk′−1:m′ ]R(k′−m′)

k′−1:0
(20)
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We have shown that a reduced generate function over a
group can be recursively constructed from reduced generate
functions over subgroups. We are however faced with the prob-
lem that the function Pm−1:k′Dk′−1:m′ , which we shall refer
to as hyper propagate, also needs to be constructed recursively.
The construction is along similar lines to the above, we will
show that we can construct a hyper propagate function over a
group from hyper propagate and reduced generate functions
over sub groups. We shall need the following self evident
equations:

Dj:i = Dj:k[Bj:k + Dk−1:i] (21)

Dj:i = Gj:k + Pj:kDk−1:i (22)

For generality consider the function:

Q
(n−m)
n−1:0 = Pn−1:mDm−1:0 (23)

Again we divide the group of bits n−1 : 0 into three subgroups
n−1 : k, k−1 : k′ and k′−1 : 0. We further choose m and m′

to be “midpoints” of the second and third groups respectively.
We first decompose the D term using equation (21):

Q
(n−m)
n−1:0 = Pn−1:mDm−1:k′ [Bm−1:k′ + Dk′−1:0] (24)

Since Pn−1:m is simply an AND of bit-level propagates, we
can rewrite:

Q
(n−m)
n−1:0 = [Pn−1:k][Pk−1:mDm−1:k′ ][Bm−1:k′ + Dk′−1:0]

(25)
The first two bracketed terms are hyper propagate functions,
the last D function can be further simplified. We now make
use of equation (22):

Q
(n−m)
n−1:0 = [Pn−1:k][Pk−1:mDm−1:k′ ]

[Bm−1:k′ + Gk′−1:m′ + Pk′−1:m′Dm′−1:0]
(26)

Which has the required form:

Q
(n−m)
n−1:0 = Q

(n−k)
n−1:kQ

(k−m)
k−1:k′ [R

(m−k′)
m−1:m′ + Q

(k′−m′)
k′−1:0 ] (27)

For the sake of completeness we rewrite equation (20), the
reduced generate function, in terms of reduced generate and
hyper propagate functions:

R
(n−m)
n−1:0 = R

(n−k)
n−1:k + R

(k−m)
k−1:k′ + Q

(m−k′)
m−1:m′R

(k′−m′)
k′−1:0

(28)

The above is an example derivation for radix three. There
are in fact a myriad of possible architectures. Table I illustrates
some higher radix examples and compares them to their prefix
counterparts. We note that in each case the reduced generate
function is simpler than the equivalent generate function, the
hyper propagate function is more complex than the equivalent
propagate function but no more complex than the reduced
generate. We further note that in general our radix n + 1
functions are comparable in complexity to radix n generate
function.

V. EXAMPLES

We now illustrate our method with two examples. The first
is a radix three 27-bit carry.
We need to construct the function G26:0. We decompose this
as

G26:0 = D26:14R
(13)
26:0

(29)

Using the radix three decomposition we have:

R
(13)
26:0 = R

(4)
26:18 + R

(4)
17:9 + Q

(5)
13:5R

(4)
8:0

D26:14 = D26:23[R
(4)
26:18 + Q

(5)
22:14]

(30)

where

R
(4)
8:0 = R

(1)
8:6 + R

(1)
5:3 + P4:2R

(1)
2:0

R
(4)
17:9 = R

(1)
17:15 + R

(1)
14:12 + P13:11R

(1)
11:9

R
(4)
26:18 = R

(1)
26:24 + R

(1)
23:21 + P22:20R

(1)
20:18

Q
(5)
13:5 = P13:11P10:8[P7:5 + R

(1)
8:6]

Q
(5)
22:14 = P22:20P19:17[P16:14 + R

(1)
17:15]

D26:23 = p26[P25:23 + R
(1)
26:24]

(31)

Each
R

(1)
k+2:k = gk+2 + gk+1 + pk+1gk

Pk+2:k = pk+2pk+1pk

(32)

If a sum needs to be computed then we proceed as Ling.
We have

sum27 = (x27 ⊕ y27) ⊕ G26:0

= (x27 ⊕ y27) ⊕ D26:14R
(13)
26:0

= R
(13)
26:0(x27 ⊕ y27) + R

(13)
26:0(x27 ⊕ y27 ⊕ D26:14)

(33)
The next example is for a 32-bit carry. We use a combination

of radix 2 and radix 4 equations. We need to construct the
function G31:0. We decompose this as

G31:0 = D31:21R
(11)
31:0

(34)

Using the radix four decomposition we have:

R
(11)
31:0 = R

(3)
31:24 + R

(3)
23:16 + Q

(5)
20:13R

(3)
15:8 + Q

(5)
20:13Q

(5)
12:5R

(3)
7:0

D31:21 = D31:29[R
(3)
31:24 + Q

(5)
28:21]

(35)
where

R
(3)
7:0 = R

(1)
7:6 + R

(1)
5:4 + P4:3R

(1)
3:2 + P4:3P2:1R

(1)
1:0

R
(3)
15:8 = R

(1)
15:14 + R

(1)
13:12 + P12:11R

(1)
11:10 + P12:11P10:9R

(1)
9:8

R
(3)
23:16 = R

(1)
23:22 + R

(1)
21:20 + P20:19R

(1)
19:18 + P20:19P18:17R

(1)
17:16

R
(3)
31:24 = R

(1)
31:30 + R

(1)
29:28 + P28:27R

(1)
27:26 + P28:27P26:25R

(1)
25:24

Q
(5)
12:5 = P12:11P10:9P8:7[R

(1)
7:6 + P6:5]

Q
(5)
20:13 = P20:19P18:17P16:15[R

(1)
15:14 + P14:13]

Q
(5)
28:21 = P28:27P26:25P24:23[R

(1)
23:22 + P22:21]

D31:29 = p31[R
(1)
31:30 + P30:29]

(36)
Each

R
(1)
k+1:k = xk+1yk+1 + xkyk

Pk+1:k = (xk+1 + yk+1)(xk + yk)
(37)
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TABLE I

COMPARISON OF COMPLEXITY AT VARIOUS RADICES

Radix Parallel Prefix New

2 G1 + P1G0 −
P1P0

3 G2 + P2G1 + P2P1G0 R2 + R1 + Q1R0

P2P1P0 Q2Q1[R0 + Q0]

4 G3 + P3G2 + P3P2G1 + P3P2P1G0 R3 + R2 + Q2R1 + Q2Q1R0

P3P2P1P0 Q3Q2Q1[R0 + Q0]

5 G4 + P4G3 + P4P3G2 + P4P3P2G1 + P4P3P2P1G0 R4 + R3 + R2 + Q2R1 + Q2Q1R0

P4P3P2P1P0 Q4Q3Q2Q1[R0 + Q0]

If a sum needs to be computed then we proceed as Ling. We have

sum32 = (x32 ⊕ y32) ⊕ G31:0

= (x32 ⊕ y32) ⊕ D31:21R
(11)
31:0

= R
(11)
31:0(x32 ⊕ y32) + R

(11)
31:0(x32 ⊕ y32 ⊕ D31:21)

(38)

VI. CONCLUSION

We have exposited a new theory of high speed binary addition. In
particular we have shown that the Ling method can be generalized to
all levels. The theory allows for a myriad of architectures suitable for
different design styles. As an example we have shown that the parallel
prefix method requires n-input gates for radix n addition, whereas
our method allows for radix n+1 addition with n-input gates. We are
currently investigating families of adders [4] due to our equations.
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