
Data Detection Algorithms for
Perpendicular Magnetic

Recording in the Presence of
Strong Media Noise

by

Robert Charles Jackson, BSc

A thesis submitted to the University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Mathematics

University of Warwick

December 2008

2

Contents

1 Viterbi Fundamentals 21

1.1 Introduction . 21

1.2 Maximum Likelihood Detection 23

1.3 White Noise Viterbi Detector 37

2 High Throughput Viterbi Detectors 41

2.1 Trellis Unrolling . 42

2.2 ACS Retiming . 47

2.3 ACS Bit Level Pipelining . 49

2.4 Loop Elimination . 50

2.4.1 Loop Elimination Complexity 59

2.5 Asymptotic Complexity of PMU 60

2.5.1 Complexity of Unrolled 1T Implementation 61

2.5.2 Complexity of K-T Implementation 62

2.6 Invariants . 66

2.7 4-State White Noise Viterbi Detector Implementations 77

2.7.1 Standard 2T Implementation 78

2.7.2 3T Implementation with Loop Elimination 80

3

4 CONTENTS

2.7.3 3T Implementation with Loop Elimination and Path

Invariants . 82

3 High Throughput Viterbi Decoders 87

3.1 Loop Invariants in Communications 88

3.2 Communications Example . 103

4 Magnetic Channel 105

4.1 Read Channel Noise Model . 105

4.2 Determining model parameters 107

4.2.1 Clean signal energy and representation as linear ISI . . 109

4.2.2 Media Noise . 114

4.2.3 Isolated Transition - Error Function 118

4.2.4 Isolated Transition - Hyperbolic Tangent 120

5 Data Dependent Detectors 123

5.1 Auto-Regressive Noise Viterbi Detector 124

5.1.1 Computation of Noise Parameters 126

5.1.2 Simulation Results . 128

5.1.3 Limitations . 129

5.1.4 Equivalence To White Noise Detector 130

5.2 Data Dependent Auto-Regressive Noise Viterbi Detector . . . 131

5.2.1 Computation of Noise Parameters 133

5.2.2 Simulation Results . 139

5.2.3 Limitations . 140

5.3 Block Diagonal Detectors . 141

CONTENTS 5

5.3.1 Simulation Results . 145

5.3.2 Limitations . 146

5.4 Data Dependent Noise Predictive Detector 146

5.4.1 Simulation Results . 147

5.4.2 Limitations . 148

5.4.3 Reduced State ISI Predictive Detectors 149

5.5 Double Detectors . 150

5.5.1 Simulation Results . 152

6 Cost Function 155

6.1 Choosing ISI target and equaliser coefficients 156

6.1.1 Maximum SNR Criteria 157

6.1.2 Minimum Mean Squared Error Criteria 160

6.1.3 Noise Spectra . 163

6.1.4 MMSE Equivalence to Whitening Noise 171

6.1.5 Minimise Bit Error Rate Criteria 172

7 Binary Addition 191

7.1 Introduction . 191

7.2 Background . 192

7.3 Ripple Carry Adder . 194

7.4 Carry Select Adder . 195

7.5 Parallel Prefix Adder . 196

7.6 High Radix Parallel Prefix Adder 202

7.7 Ling Adder . 203

7.8 Generalisation of Ling Adder 206

6 CONTENTS

7.8.1 Generalised Ling Fundamentals 206

7.8.2 Modified Pseudo Generate and Hyper Propagate Func-

tions . 214

7.8.3 Generalised Ling Radix-3 Recursion 216

7.8.4 Generalised Ling Radix-3 Example 220

7.8.5 Higher Radix Generalised Ling Recursions 222

7.8.6 Generalised Ling Complexity 223

7.9 Summary . 224

8 Conclusions 227

8.1 Loop Elimination . 227

8.2 Invariants . 229

8.3 Data Dependent Double Detectors 230

8.4 Cost Function . 232

8.5 Binary Addition . 235

List of Figures

1.1 Low density waveform without ISI and high density waveform

with ISI, for perpendicular magnetic recoding channel. 22

1.2 4 state trellis. 31

1.3 4 state trellis showing maximum likelihood path. 31

1.4 Two branches joining at a single state. 32

1.5 8 state (1,4) RLL trellis. 34

1.6 4 state trellis showing maximum likelihood path and conver-

gence of contending paths. 36

2.1 Viterbi detector implementation comprising branch metric,

path metric and traceback units. 42

2.2 Path metric unit comprising ACS units for each state. 42

2.3 1T ACS unit. 43

2.4 4 state 2T trellis. 44

2.5 2T ACS unit. 45

2.6 4 state 3T trellis. 45

2.7 Two iterations of 1T ACS unit, with 1T CSA retiming region

indicated. 47

7

8 LIST OF FIGURES

2.8 Unoptimised 1T CSA unit. 48

2.9 Optimised 1T CSA unit. 48

2.10 All paths converging at state 1 of 3 time slices of a 4 state trellis. 50

2.11 Exactly two paths connecting initial and final state. 50

2.12 3T ACS unit. 52

2.13 3T ACS unit with duplicated input path metrics. Red boxes

indicate region to be transformed. 55

2.14 3T ACS unit with duplicated input path metrics, transformed

to a 2T ACS unit (shown in black). 56

2.15 4 state trellis illustrating loop elimination. (a) shows original

1T trellis. (b) equivalent 3T trellis. (c) compare sides of each

loop. (d) remove longest side of each loop. (e) 3T trellis with

loops eliminated. 57

2.16 2 state trellis illustrating recursive loop elimination. 58

2.17 Two loops with same initial state and neighbouring final states. 70

2.18 Two loops with same final state and neighbouring initial states. 73

2.19 Two loops with same final state and any two initial states. . . 75

2.20 4 state 2T trellis. 78

2.21 4 state 3T trellis. 80

3.1 K = 7 rate 1
2

convolutional code octal (171,133). 88

4.1 Isolated transition, isolated transition with position jitter and

isolated transition with phase jitter, T50 = 1.4. 106

4.2 Measuring T50. 119

LIST OF FIGURES 9

5.1 Comparison of white noise MMSE detector and data indepen-

dent auto-regressive detector. 129

5.2 Comparison of white noise MMSE detector, data independent

auto-regressive detector and data dependent auto-regressive

detector. 139

5.3 Comparison of data dependent auto-regressive detectors with

different parameters. 141

5.4 Comparison of white noise MMSE detector and block diagonal

detector and data dependent auto-regressive detector. 145

5.5 Local traceback of single data bit xN−K−1. 147

5.6 Comparison of white noise MMSE detector, data dependent

auto-regressive detector and data dependent noise predictive

detector. 148

5.7 Comparison of 4 and 8 state white noise MMSE detectors

against a 4 state ISI predictive white noise detector. 149

5.8 DDNP detector showing long noise predictive loop between

ACS and BMU. 150

5.9 Double detector replaces noise predictive loop with survivor

information from pre-detector. 151

5.10 Comparison of white noise MMSE detector, data dependent

auto-regressive detector, data dependent noise predictive de-

tector and double detector. 153

6.1 Spectrum of unequalised received signal for [1 3 3 1] AWGN

channel. 163

10 LIST OF FIGURES

6.2 Spectrum of received signal equalised to target [1 2.1 2.1 1] as

chosen by SNR criteria for [1 3 3 1] AWGN channel. 164

6.3 Spectrum of received signal equalised to target [1 1.1 0.6 0.1]

as chosen by MMSE criteria for [1 3 3 1] AWGN channel. . . . 164

6.4 Spectrum of unequalised received signal for 70% position jitter

erf channel. 165

6.5 Spectrum of received signal equalised to target [1.00 2.21 2.21

1.00] as chosen by SNR criteria for 70% position jitter erf

channel. 166

6.6 Spectrum of received signal equalised to target [1.00 0.97 0.32

-0.04] as chosen by MMSE criteria for 70% position jitter erf

channel. 166

6.7 Spectrum of unequalised received signal for 90% media noise

90% position jitter erf channel. 167

6.8 Spectrum of received signal equalised to target [1.00 2.23 2.22

0.98] as chosen by SNR criteria for 90% media noise 90% po-

sition jitter erf channel. 168

6.9 Spectrum of received signal equalised to target [1.00 0.87 0.15

-0.07] as chosen by MMSE criteria for 90% media noise 90%

position jitter erf channel. 168

6.10 Comparison of performance for 90% media noise 90% position

jitter erf channel. 169

6.11 Spectrum of unequalised received signal for 90% media noise

90% position jitter tanh channel. 169

LIST OF FIGURES 11

6.12 Spectrum of received signal equalised to target [1.00 2.19 2.18

0.98] as chosen by SNR criteria for 90% media noise 90% po-

sition jitter tanh channel. 170

6.13 Spectrum of received signal equalised to target [1.00 0.81 0.09

-0.03] as chosen by MMSE criteria for 90% media noise 90%

position jitter tanh channel. 170

6.14 4 state trellis showing maximum likelihood path and error event.176

6.15 Estimated BER for white noise channel. 185

6.16 Estimated BER for jitter dominated channel with erf isolated

transition. 186

6.17 Spectrum of received signal equalised to target [1.00 2.06 1.13

-0.41] as chosen by BER criteria for 70% position jitter erf

channel. 187

6.18 Spectrum of received signal equalised to target [1.00 1.11 0.12

-0.14] as chosen by BER criteria for 90% media noise 90%

position jitter erf channel. 187

6.19 Comparison of performance for 90% media noise 90% position

jitter erf channel. 188

6.20 Spectrum of received signal equalised to target [1.00 2.97 1.13

-0.52] as chosen by BER criteria for 90% media noise 90%

position jitter tanh channel. 189

6.21 Comparison of performance for 90% media noise 90% position

jitter tanh channel. 189

7.1 Ripple carry adder. 194

12 LIST OF FIGURES

7.2 27-bit Radix-3 Ladner-Fischer Adder. 201

7.3 27-bit Radix-3 Kogge-Stone Adder. 201

7.4 27-bit Radix-3 Generalised Ling Carry. 220

7.5 64-bit Radix-4 Generalised Ling Carry. 224

8.1 Loop elimination. 228

8.2 Double detector replaces noise predictive loop with survivor

information from pre-detector. 231

8.3 Comparison of white noise MMSE detector, data dependent

auto-regressive detector, data dependent noise predictive de-

tector and double detector. 232

8.4 Estimated BER for white noise channel. 234

8.5 Comparison of performance for 90% media noise 90% position

jitter erf channel. 235

List of Tables

2.1 Complexity of trellis unrolling. 46

2.2 Complexity of loop elimination for K = 2. 59

2.3 Complexity of loop elimination for K = 4. 59

2.4 Complexity comparison of trellis unrolling against loop elimi-

nation. 60

2.5 Number of operations required to sum branch metrics. 63

2.6 Path traversed by loop. 68

2.7 Transitions along each side of loop. 68

2.8 Path traversed by each loop. 70

2.9 Transitions along each side of each loop. 71

2.10 Path traversed by each loop. 73

2.11 Transitions along each side of each loop. 74

2.12 Path traversed by each loop. 75

2.13 Transitions along each side of each loop. 76

2.14 Complexity of 2T implementation. 80

2.15 Complexity of 2T standard implementation and 3T implemen-

tation with loop elimination. 81

13

14 LIST OF TABLES

2.16 Complexity of various 4-state implementations. 85

6.1 Comparison of performance at 12.5 dB for [1 3 3 1] AWGN

channel. 165

6.2 Comparison of performance at 14.0 dB for 70% position jitter

erf channel. 167

6.3 Comparison of performance at 14.0 dB for 90% media noise

90% position jitter tanh channel. 171

6.4 Comparison of performance at 14.0 dB for 70% position jitter

erf channel. 187

7.1 Complexity of parallel prefix adders. 224

7.2 Complexity of Ling adders. Logic simplification of the first

level is shown. Subsequent levels have the same structure as

parallel prefix. 225

7.3 Complexity of generalised Ling adders. 225

8.1 Complexity comparison of trellis unrolling against loop elimi-

nation. 228

8.2 Complexity of various 4-state implementations. 230

List of Abbreviations

ACS Add compare select unit

AWGN Additive white Gaussian noise

BER Bit error rate

BM Branch metric

BMU Branch metric unit

CSA Compare select add unit

dB Decibels

DDNP Data dependent noise predictive

ISI Intersymbol interference

LSB Least significant bit

MMSE Minimum mean squared error

MSB Most significant bit

NRZ Non return to zero

PM Path metric

PMU Path metric unit

PRML Partial response maximum likelihood

RLL Run length limited

SNR Signal to noise ratio

SVD Singular value decomposition

TBU Traceback unit

VLSI Very large scale integration

Acknowledgements

I would like to express my sincere gratitude to my academic supervisor, Dr.

Oleg Zaboronski, for his friendly encouragement and invaluable guidance

during the course of my research. His enthusiastic approach has made this a

truly pleasurable experience.

Special thanks to the Royal Commission for the Exhibition of 1851 for the In-

dustrial Fellowship which gave me the opportunity to continue my education

whilst working in industry.

I would also like to thank all my colleagues at Arithmatica, in particular Dr.

Sunil Talwar, who encouraged me early on as my Royal Commission indus-

trial supervisor, as well as Peter Meulemans, Sam Gratrix, Nick Atkinson,

Peter Collings and Tom Parnell, for their support and advice over the years.

Finally, I would like to thank my family for all their support and encour-

agement, in particular my parents Anne and Ray Jackson, and sister Kathy

Jackson.

Declaration

I declare that, except where acknowledged, the material contained in this

thesis is my own work and has not been submitted elsewhere for the purpose

of obtaining an academic degree.

Robert Charles Jackson

December 2008

Abstract

As the throughput and density requirements increase for perpendicular mag-

netic recording channels, the presence of strong media noise degrades perfor-

mance.

Detection algorithms have been developed that increase performance in chan-

nels with strong media noise through the use of data dependent detectors.

However optimal data dependent detectors are exponentially more complex

than data independent detectors, and therefore cannot be fully exploited.

In this thesis we shall discuss the existing detection algorithms, comparing

the performance against the complexity.

We then introduce a new sub-optimal detection algorithm, which employs a

simple pre-detector that supplies estimates to a main detector. Numerical

simulations are performed which show near optimal performance, but without

the exponential increase in complexity.

We will also show how detector implementations can exploit structure in the

trellis to further reduce complexity, through loops and path invariants.

An analytical means of measuring bit error rate from only the statistics of

noise is presented, and this is utilised to optimally determine the equaliser

and ISI target coefficients for a white noise Viterbi detector.

Finally, we introduce a new class of VLSI binary addition algorithms which

can be utilised to increase the throughput of a Viterbi detector, but which

also has a wider application in hardware design.

Summary

The first chapter Viterbi Fundamentals is an introduction to maximum like-

lihood detection and the Viterbi algorithm. We re-derive the expression for

determining the sequence transmitted with maximum likelihood given the

channel model and received signal, and describe how maximum likelihood

detection can be visualised on a trellis. We illustrate this by consideration

of the AWGN channel.

We begin the second chapter High Throughput Viterbi Detectors by consid-

ering existing methods for improving the throughput of Viterbi detectors. In

particular, we discuss trellis unrolling, ACS retiming and bit level pipelining,

and their effects on complexity.

We will then introduce the novel techniques of loop elimination and invari-

ants, analyse their effects on complexity, and consider the reduction in com-

plexity for practical examples.

The third chapter High Throughput Viterbi Decoders applies the novel prin-

ciples of loop elimination and invariants to Viterbi detectors for use in com-

munications channels, and gives a practical example.

An introduction to the magnetic channel model that we shall use is subse-

quent chapters is given in the forth chapter, Magnetic Channel.

The fifth chapter Data Dependent Detectors begins by introducing existing

techniques for improving performance in perpendicular channels, including

20 LIST OF TABLES

auto-regressive & block diagonal data dependent detectors, and data depen-

dent noise predictive detectors. We compare the performance of each method,

and discuss the practical drawbacks of implementations of such detectors.

A novel implementation of double detector is then introduced. We compare

the performance and implementation to existing methods, and discuss how

the double detector achieve high performance at low complexity.

In the sixth chapter Cost Function, a novel approach to analytically deter-

mine the bit error rate of a Viterbi detector from only the statistics of the

channel is described.

This method is then applied to the problem of determining ISI target and

equaliser coefficients that minimise bit error rate, and the results are com-

pared to existing approaches.

The final chapter Binary Addition introduces a novel implementation of bi-

nary addition, and compares the complexity to existing state of the art adder

implementations.

Chapter 1

Viterbi Fundamentals

1.1 Introduction

Magnetic recording systems store data on a magnetic medium, so that the

information can be retrieved at some point in the future.

When the information is recovered, it must be close to error free. Hard disk

drives require error rates of 10−12 or better.

To achieve low error rates, data can be written at a low density such that

each transition written on the magnetic medium results in a strong voltage

from the read head which is localised to that particular transition, so the

information can be recovered by peak detection.

However, there is also the underlying goal of storing as much information

as possible on the magnetic medium, which is achieved by increasing the

density.

21

22 CHAPTER 1. VITERBI FUNDAMENTALS

But when the pulse width becomes comparable to the channel bit period, the

isolated transitions overlap causing intersymbol interference (ISI) and peak

detection becomes unreliable.

0 0 0 0 0 01 1 1 1Input data

Waveform

Low density
read waveform

High density
read waveform

1 0

Figure 1.1: Low density waveform without ISI and high density waveform
with ISI, for perpendicular magnetic recoding channel.

Partial response maximum likelihood (PRML) detection was developed as a

replacement for peak detection, where the received signal is equalised to a

predetermined target, and maximum likelihood decoding is used to recover

the information.

The Viterbi algorithm was first introduced in 1967 [8] as a method of decoding

convolutional codes. In 1972, Forney [9] showed that the Viterbi algorithm

solves the maximum likelihood sequence detection problem optimally in the

presence of intersymbol interference and additive white noise.

Kobayashi and Tang [10] were the first to apply the Viterbi algorithm to

magnetic recoding, and PRML subsequently became firmly established by

1.2. MAXIMUM LIKELIHOOD DETECTION 23

read channel manufacturers.

As density continues to increase and greater throughput is required, the ef-

fects of random changes in position and phase of the isolated transitions

become increasingly important. These effects are characterised by correla-

tions between noise samples. Kavcic [11] introduced signal dependent auto-

regressive Viterbi detectors which take such correlations into account.

Note also that the Viterbi algorithm has many applications outside of mag-

netic recoding, particularly in communications systems such as CDMA and

GSM digital mobile phones, dial-up modems, satellite and deep-space com-

munications, wireless and wired networking.

1.2 Maximum Likelihood Detection

In this section, we start by introducing the maximum likelihood sequence

detection problem.

We will reformulate the solution, and in the process introduce branch metrics

and path metrics, then map the reformulated solution to a trellis represen-

tation.

Finally we describe the Viterbi algorithm and the windowed Viterbi algo-

rithm.

Theorem 1.2.1 (Maximum Likelihood Sequence Detection). Suppose that

equiprobable binary sequences x ∈ {0, 1}N are transmitted over a noisy chan-

24 CHAPTER 1. VITERBI FUNDAMENTALS

nel,

ri = f(ri−1, . . . , r0, xi, . . . , x0) (1.2.1)

Then given the received sequence r ∈ RN , the original unencoded sequence

x̂ ∈ {0, 1}N which maximises the conditional probability density,

x̂ = argmax
x∈{0,1}N

{ρ(x | r)} (1.2.2)

is obtained by maximising the following function

x̂ = argmax
x∈{0,1}N

{
N−1∏
i=0

ρ(ri | ri−1, . . . , r0, xi, . . . , x0)

}
(1.2.3)

Proof. Applying Bayes’ theorem [12] to (1.2.2) yields,

x̂ = argmax
x∈{0,1}N

{
ρ(r | x)ρ(x)

ρ(r)

}
(1.2.4)

Since all input sequences x ∈ {0, 1}N are assumed to be equiprobable, and as

ρ(r) is independent of the maximisation argument x, we have the following,

x̂ = argmax
x∈{0,1}N

{ρ(r | x)} (1.2.5)

The sequence x̂ is the maximally likely estimate of sequence x. The condi-

tional probability density ρ(r | x) is called the maximal likelihood function

(as a function of x).

1.2. MAXIMUM LIKELIHOOD DETECTION 25

Using the joint probability density identity,

ρ(A, B | C) = ρ(A | B,C)ρ(B | C) (1.2.6)

the maximal likelihood function can be expanded using repeated application

of (1.2.6),

ρ(r | x) =
N−1∏
i=0

ρ(ri | ri−1, . . . , r0, x) (1.2.7)

Moreover, because of the assumed causality of the signal, the received signal

ri only depends on xi, . . . , x0 from the original sequence.

Note that in general, transitions on both sides of the sampling point affect

the signal. If however this influence is finite, one can enumerate received

signals in such a way that the channel looks causal.

Therefore,

ρ(r | x) =
N−1∏
i=0

ρ(ri | ri−1, . . . , r0, xi, . . . , x0) (1.2.8)

Corollary 1.2.2. Maximising (1.2.3) is equivalent to the following minimi-

sation

x̂ = argmin
x∈{0,1}N

{
N−1∑
i=0

− ln ρ(ri | ri−1, . . . , r0, xi, . . . , x0)

}
(1.2.9)

Proof. The natural logarithm function is strictly increasing and therefore has

no effect on the argument chosen in the maximisation. The negation simply

changes the problem from maximisation to minimisation.

26 CHAPTER 1. VITERBI FUNDAMENTALS

Definition 1.2.3 (Branch Metric & Path Metric). We define the following

function of the probability density to be the branch metric at time i,

BM (i)(xi, . . . , x0) = − ln ρ(ri | ri−1, . . . , r0, xi, . . . , x0) (1.2.10)

Note that for brevity, we have omitted the dependence on the received signal

from the notation.

Therefore we can express the maximum likelihood function in (1.2.9) as

x̂ = argmin
x∈{0,1}N

{
N−1∑
i=0

BM (i)(xi, . . . , x0)

}
(1.2.11)

Note that since probability densities take values in the range [0, 1], the branch

metric is non-negative.

The path metric at time t for path xt, . . . , x0 is defined to be

PM (t)(xt, . . . , x0) =
t∑

i=0

BM (i)(xi, . . . , x0) (1.2.12)

Therefore we can express the maximum likelihood function in (1.2.9) as

x̂ = argmin
x∈{0,1}N

{
PM (N−1)(r, x)

}
(1.2.13)

Lemma 1.2.4. For a given path x, the path metric at time t can be de-

termined from the path metric at time t − 1 and the branch metric at time

1.2. MAXIMUM LIKELIHOOD DETECTION 27

t.

PM (t)(xt, . . . , x0) = BM (t)(xt, . . . , x0) + PM (t−1)(xt−1, . . . , x0) (1.2.14)

Proof.

PM (t)(xt, . . . , x0) =
t∑

i=0

BM (i)(xi, . . . , x0)

= BM (t)(xt, . . . , x0) +
t−1∑
i=0

BM (i)(xi, . . . , x0)

= BM (t)(xt, . . . , x0) + PM (t−1)(xt−1, . . . , x0)

(1.2.15)

Definition 1.2.5 (Markov Channel). A Markov channel is a binary input

channel with the following property

ρ(ri | ri−1, . . . , r0, xi, . . . , x0) = ρ(ri | ri−1, . . . , r0, xi, . . . , xi−K+1) (1.2.16)

where K > 0 is the constraint length.

Corollary 1.2.6. Suppose a binary sequence x ∈ {0, 1}N is transmitted over

a Markov channel with constraint length K. Then the maximum likelihood

function is given by

x̂ = argmax
x∈{0,1}N

{
N−1∏
i=0

ρ(ri | ri−1, . . . , r0, xi, . . . , xi−K+1)

}
(1.2.17)

28 CHAPTER 1. VITERBI FUNDAMENTALS

or equivalently

x̂ = argmin
x∈{0,1}N

{
N−1∑
i=0

BM (i)(xi, . . . , xi−K+1)

}
(1.2.18)

Proof. Apply the Markov channel property (1.2.16) to the maximum likeli-

hood function in (1.2.3) and (1.2.9).

By direct inspection, the maximum likelihood path is found by comparing

the received signal r to all 2N possible ideal signals corresponding to the 2N

possible input sequences x.

However, we can use a dynamic programming algorithm called the Viterbi

algorithm.

Definition 1.2.7. Define the surviving path metric for all paths ending with

the sequence xt, . . . , xt−K+2 to be

SPM (t)(xt, . . . , xt−K+2) = min
xt−K+1,...,x0

PM (t)(xt, . . . , x0) (1.2.19)

Theorem 1.2.8. The surviving path metric for all paths ending with the

sequence xt, . . . , xt−K+2 can be calculated recursively as

SPM (t)(xt, . . . , xt−K+2)

= min
xt−K+1∈{0,1}

{
BM t(xt, . . . , xt−K+1) + SPM (t−1)(xt−1, . . . , xt−K+1)

}

(1.2.20)

Proof. From the definition in (1.2.19), separate xt−K+1 from the minimisa-

tion. Then apply the path metric decomposition from (1.2.14), and factor

1.2. MAXIMUM LIKELIHOOD DETECTION 29

the branch metric from the inner minimisation.

SPM (t)(xt, . . . , xt−K+2)

= min
xt−K+1,...,x0

PM (t)(xt, . . . , x0)

= min
xt−K+1∈{0,1}

{
min

xt−K ,...,x0

PM (t)(xt, . . . , x0)
}

= min
xt−K+1∈{0,1}

{
min

xt−K ,...,x0

{
BM (t)(xt, . . . , xt−K+1) + PM (t−1)(xt−1, . . . , x0)

}}

= min
xt−K+1∈{0,1}

{
BM (t)(xt, . . . , xt−K+1) + min

xt−K ,...,x0

PM (t−1)(xt−1, . . . , x0)
}

= min
xt−K+1∈{0,1}

{
BM (t)(xt, . . . , xt−K+1) + SPM (t−1)(xt−1, . . . , xt−K+1)

}

(1.2.21)

Corollary 1.2.9. The path metric of the maximum likelihood path,

PM(x̂) = min
x∈{0,1}N

PM (N−1)(xN−1, . . . , x0) (1.2.22)

can be obtained by minimising over all surviving path metrics ending in

xN−1, . . . , xN−K+1

PM(x̂) = min
xN−1,...,xN−K+1

SPM (N−1)(xN−1, . . . , xN−K+1) (1.2.23)

Proof. Separate the minimisation into two stages, then substitute using the

30 CHAPTER 1. VITERBI FUNDAMENTALS

definition in (1.2.19)

PM(x̂) = min
x∈{0,1}N

PM (N−1)(xN−1, . . . , x0)

= min
xN−1,...,xN−K+1

{
min

xN−K,...,x0

PM (N−1)(xN−1, . . . , x0)

}

= min
xN−1,...,xN−K+1

SPM (N−1)(xN−1, . . . , xN−K+1)

(1.2.24)

The above allows us to visualise the maximum likelihood path on a trellis.

The trellis can be described as follows

• The trellis has length N .

• At each time t, there are 2K−1 states labelled xt−K+2, . . . , xt.

• Each state xt−K+2, . . . , xt is connected to two previous states, namely

0, xt−K+2, . . . , xt−1 and 1, xt−K+2, . . . , xt−1.

• Each state xt−K+2, . . . , xt is connected to two subsequent states, namely

xt−K+2, . . . , xt, 0 and xt−K+2, . . . , xt, 1.

• The state xt−K+2, . . . , xt holds the value of the surviving path metric

SPM (t)(xt, . . . , xt−K+2).

• The edge connecting states xt−K+1, . . . , xt−1 and xt−K+2, . . . , xt con-

tains the branch metric BM (t)(xt, . . . , xt−K+1).

By construction, the trellis has the following properties

• Every sequence x0, . . . , xN−1 is represented uniquely as a path through

the trellis.

1.2. MAXIMUM LIKELIHOOD DETECTION 31

• For a given path through the trellis, the sum of the edges traversed by

the path is equal to the path metric.

• The maximum likelihood path corresponds to a unique path through

the trellis.

11

00

01

10

Output 0

Output 1

Figure 1.2: 4 state trellis.

Output 0

Output 1

Maximum Likelihood Path

11

00

01

10

Figure 1.3: 4 state trellis showing maximum likelihood path.

Corollary 1.2.10. The surviving path metric at state xt−K+2, . . . , xt is found

on the trellis by summing the surviving path metric at each connected pre-

vious state with the corresponding branch metric, and minimising over each

state.

32 CHAPTER 1. VITERBI FUNDAMENTALS

1, xN−K+1, . . . , xN−2

0, xN−K+1, . . . , xN−2

xN−K+1, . . . , xN−1

BM (N−1)(1, xN−K+1, . . . , xN−1)

BM (N−1)(0, xN−K+1, . . . , xN−1)

Figure 1.4: Two branches joining at a single state.

Proof. From (1.2.20) we have the following

SPM (t)(xt, . . . , xt−K+2)

= min
xt−K+1∈{0,1}

{
BM (t)(xt, . . . , xt−K+1) + SPM (t−1)(xt−1, . . . , xt−K+1)

}

(1.2.25)

By construction, state xt−K+2, . . . , xt is connected to states 0, xt−K+2, . . . , xt−1

and 1, xt−K+2, . . . , xt−1. The edges connecting state xt−K+1, . . . , xt−1 to state

xt−K+2, . . . , xt contains the branch metric BM (t)(xt, . . . , xt−K+1) and the pre-

vious states contain the surviving path metrics SPM (t−1)(xt−1, . . . , xt−K+1).

Notation. Henceforth, we denote the surviving path metric at state i as

PM
(t)
i , and the branch metric connecting states j and i as BM

(t)
j,i .

Algorithm 1.2.11 (Viterbi Algorithm for Markov channel). The following

describes the Viterbi algorithm [8,9].

1. for i = 0 to 2K−1 − 1

1.1. initialise PM
(0)
i = 0

1.2. MAXIMUM LIKELIHOOD DETECTION 33

2. for t = 1 to N

2.1. for i = 0 to 2K−1 − 1

2.1.1. let j, k be the previous states connected to current state i

2.1.2. then j =
⌊

1
2
i
⌋

and k =
⌊

1
2
i
⌋

+ 2K−2

2.1.3. PM
(t)
i = min

{
PM

(t−1)
j + BM

(t)
j,i , PM

(t−1)
k + BM

(t)
k,i

}

2.1.4. store the decision argmin
{

PM
(t−1)
j + BM

(t)
j,i , PM

(t−1)
k + BM

(t)
k,i

}

3. determine the final state, f , which contains the smallest path metric

f = argmini PM
(N)
i

4. from the final state f , traceback the maximum likelihood path through

the trellis following the stored decisions

5. output the maximum likelihood path

Theorem 1.2.12 (Viterbi Algorithm for Markov channel). The Viterbi algo-

rithm in 1.2.11 determines the maximum likelihood path through the trellis.

For proof, refer to [9].

The Viterbi algorithm is not restricted to such regular trellises, and can be

generalised to any finite state trellis.

However, for the remainder of this thesis, we shall restrict ourselves to con-

siderations of regular trellises, but it should be noted that many of the results

extend to an arbitrary trellis.

Example 1.2.13 ((1,4) RLL code). Consider the trellis for a (1,4) RLL code,

where the minimum length of a run is 1, and the maximum length of a run

34 CHAPTER 1. VITERBI FUNDAMENTALS

is 4, where a run refers to consecutive inputs with the same value. Encode

the states by the length of the current run {1, 2, 3, 4}, and the value of each

term in the current run {0, 1}.

Output 0

Output 1

1,0

1,1

2,0

2,1

3,0

3,1

4,0

4,1

Figure 1.5: 8 state (1,4) RLL trellis.

Algorithm 1.2.14 (Viterbi Algorithm for any finite state trellis). The fol-

lowing described the Viterbi Algorithm for any finite state trellis.

1. foreach state i

1.1. initialise PM
(0)
i = 0

2. for t = 1 to N

2.1. foreach state i

2.1.1. let Si be the set of states at time t− 1 connected to state i at time t

2.1.2. PM
(t)
i = min

j∈Si

{
PM

(t−1)
j + BM

(t)
j,i

}

2.1.3. store the decision argmin
j∈Si

{
PM

(t−1)
j + BM

(t)
j,i

}

1.2. MAXIMUM LIKELIHOOD DETECTION 35

3. determine the final state, f , which contains the smallest path metric

f = argmini PM
(N)
i

4. from the final state f , traceback the maximum likelihood path through

the trellis following the stored decisions

5. output the maximum likelihood path

Theorem 1.2.15 (Viterbi Algorithm for any finite state trellis). The Viterbi

algorithm in 1.2.14 determines the maximum likelihood path through the

trellis.

For proof, refer to [9].

The Viterbi algorithm proceeds in two discrete steps. Firstly we move for-

ward through the trellis eliminating contending paths, leaving only a single

surviving path for each state and storing the decision we made as to which

path survives. Having proceeded forward through the trellis, we choose the

minimum of the surviving path metrics at the final state, and trace the de-

cisions backwards through the trellis.

We have so far restricted our considerations to finite length trellises, but we

can further generalise the Viterbi algorithm to infinite trellises, by using a

sliding window approach together with the observation that all contending

paths converge with high probability after relatively few time steps (5K and

10K are common estimates for the convergence length).

36 CHAPTER 1. VITERBI FUNDAMENTALS

Output 0

Output 1 Contending Paths

Maximum Likelihood Path

11

00

01

10

Figure 1.6: 4 state trellis showing maximum likelihood path and convergence
of contending paths.

Algorithm 1.2.16 (Windowed Viterbi Algorithm). The Viterbi algorithm

determines the maximum likelihood path through the trellis as follows

1. foreach state i

1.1. initialise PM
(0)
i = 0

2. for t > 0

2.1. foreach state i

2.1.1. let Si be the set of states at time t− 1 connected to state i at time t

2.1.2. PM
(t)
i = min

j∈Si

{
PM

(t−1)
j + BM

(t)
j,i

}

2.1.3. store the decision argmin
j∈Si

{
PM

(t−1)
j + BM

(t)
j,i

}

2.1.4. determine the current state with the smallest path metric smin =

argmini PM
(t)
i

2.1.5. from the state smin, traceback the maximum likelihood path back T

time steps through the trellis following the stored decisions

2.1.6. output the decision at time t− T

1.3. WHITE NOISE VITERBI DETECTOR 37

where T is the traceback length.

In 2.1.5. we traceback from the best current state and hence this is referred

to as best state traceback. But since all contending paths are assumed to

eventually converge, we may choose a fixed state (usually the zero state)

to traceback from. This is known as zero state traceback. Note that a

longer traceback length is required for zero state traceback to achieve similar

performance to best state traceback.

Theorem 1.2.17 (Windowed Viterbi Algorithm). The windowed Viterbi

algorithm as stated in 1.2.16 approaches the performance of the Viterbi al-

gorithm as the traceback length is increased.

For proof, refer to [9].

1.3 White Noise Viterbi Detector

We can now solve the maximum likelihood sequence detection problem in

the presence of intersymbol interference and additive white noise [9].

Theorem 1.3.1. Suppose a binary sequence x ∈ {0, 1}N which is encoded

with a non-recursive convolutional code describing inter-symbol interference

(ISI) with impulse response {g0, . . . , gI},

yi =
I∑

k=0

gkxi−k (1.3.1)

38 CHAPTER 1. VITERBI FUNDAMENTALS

is transmitted over an additive white Gaussian noise (AWGN) channel,

ri = yi + ωi (1.3.2)

where ωi ∼ N(0, σ2). Then given the received sequence r ∈ RN , the original

unencoded sequence x̂ ∈ {0, 1}N transmitted with maximum likelihood is

given by

x̂ = argmin
x∈{0,1}N





N−1∑
i=0

(
ri −

I∑

k=0

gkxi−k

)2


 (1.3.3)

Proof. Since ωi ∼ N(0, σ2), the noise component of the received signals are

uncorrelated, therefore,

ρ(r | x) =
N−1∏
i=0

ρ(ri | ri−1, . . . , r0, xi, . . . , x0)

=
N−1∏
i=0

ρ(ri | xi, . . . , x0)

=
N−1∏
i=0

ρ(ri | xi, . . . , xi−I)

(1.3.4)

Furthermore, the probability density ρ(ri | xi, . . . , xi−I) is given by,

ρ(ri | xi, . . . , xi−I) =
1

σ
√

2π
exp

(
− 1

2σ2
ω2

i

)
(1.3.5)

which using (1.3.2) can be expressed as,

ρ(ri | xi, . . . , xi−I) =
1

σ
√

2π
exp


− 1

2σ2

(
ri −

I∑

k=0

gkxi−k

)2

 (1.3.6)

1.3. WHITE NOISE VITERBI DETECTOR 39

Therefore by (1.2.3), the maximally likely sequence x̂ is obtained by,

x̂ = argmax
x∈{0,1}N





N−1∏
i=0

1

σ
√

2π
exp


− 1

2σ2

(
ri −

I∑

k=0

gkxi−k

)2







= argmin
x∈{0,1}N





N−1∏
i=0

exp

(
ri −

I∑

k=0

gkxi−k

)2




= argmin
x∈{0,1}N





N−1∑
i=0

(
ri −

I∑

k=0

gkxi−k

)2




(1.3.7)

Definition 1.3.2 (White Noise Branch Metric). The white noise branch

metric is given by

BM (i)(ri, xi−I , . . . , xi) =

(
ri −

I∑

k=0

gkxi−k

)2

(1.3.8)

Note that in the above branch metric, the term r2
i is common to all branches

at i and can therefore be subtracted from each branch as the argument of

the minimisation in (1.2.3) will not be effected.

Therefore we can equivalently use the following definition for white noise

branch metric, which does not require the square of the received signal.

Definition 1.3.3 (Simplified White Noise Branch Metric). The simplified

white noise branch metric is given by

BM (i)(ri, xi−I , . . . , xi) =

(
I∑

k=0

gkxi−k

)2

− 2ri

(
I∑

k=0

gkxi−k

)
(1.3.9)

40 CHAPTER 1. VITERBI FUNDAMENTALS

Chapter 2

High Throughput Viterbi

Detectors

In this chapter, we will investigate how to increase the throughput of Viterbi

detectors without prohibitively increasing the complexity.

Firstly we shall discuss loop elimination, which improves throughput of high

radix Viterbi detectors at the expense an exponential increase in complex-

ity. Then we shall discuss invariants of initial and final states which lowers

complexity by exploiting the properties of path differences between the sides

of loops, and finally demonstrate loop elimination and invariants with an

implementation example.

41

42 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

2.1 Trellis Unrolling

Implementations of the Viterbi algorithm can be separated into three distinct

parts.

First the branch metric unit (BMU) takes the received signal and produces

all the required branch metrics and passed them to the path metric unit

(PMU). The PMU adds the branch metrics to the accumulated path metrics

and discards all but the shortest path to each state. This is referred to as

add-compare-select (ACS) and the PMU consists of an ACS unit for each

state. The decisions made by the ACS units are passed to the traceback unit

(TBU) which keeps track of each path so the shortest path can eventually

be traced back from the final state.

BMU TBU
Decoded outputReceived signal PMU decisionsBranch metrics

PMU

Figure 2.1: Viterbi detector implementation comprising branch metric, path
metric and traceback units.

ACS 3

ACS 2

ACS 1

ACS 0

BM
(1)
3

BM
(3)
3

BM
(0)
1

BM
(2)
1

BM
(3)
2

BM
(1)
2

BM
(0)
0

BM
(2)
0

P M2

P M3

P M1

P M0

d3

d2

d1

d0

Figure 2.2: Path metric unit comprising ACS units for each state.

2.1. TRELLIS UNROLLING 43

The ACS units inside the PMU are connected by a feedback loop, since the

previous path metrics are required in order to compute the new path metric.

d

PM

PM0

PM1 +

+

<

BM (1)

BM (0)

Figure 2.3: 1T ACS unit.

As shown in figure 2.3, a 1T ACS unit comprises 2 two input adders which

sum the previous path metrics with the branch metrics, and a single two input

minimiser to select the smaller of the two new contending path metrics.

In a hardware implementation, the adders may be implemented in parallel,

therefore the critical path through the ACS unit runs through one of the two

input adders, then through the two input minimiser.

The delay and cell area for a two input adder and two input minimiser are

comparable, therefore we shall consider them both to have unit delay and

area. Hence a 1T ACS unit has an area of 3 units and a delay of 2 units.

It is possible to accelerate the ACS computation using carrysave arithmetic

44 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

for the addition [13], which allows one of the adders to be replaced by a 4:2

compressor. It should be noted that at the small bit widths generally used

in Viterbi detectors, typically less than 8-bits, this saving will be negligible

and comes at the expense of increased complexity, since the non-carrysave

sums containing the contending path metrics must also be computed before

the surviving path metric is selected by the result of the comparison.

To improve the throughput of the Viterbi algorithm, a 1T trellis, such as

figure 1.2, may be unrolled into the 2T trellis of figure 2.4.

11

00

01

10

Figure 2.4: 4 state 2T trellis.

In the regular 1T trellis, two path are compared at each state, with the longer

path being discarded in favour of the shorter path.

For the 2T trellis, two steps from the 1T trellis are combined together. We

must therefore compare four paths at each state, discarding the three longest

paths in favour of the shortest path.

As shown in figure 2.5, a 2T ACS unit comprises 4 two input adders which

sum the previous path metrics with the branch metrics, and a 3 two input

minimiser to select the smallest of the four new contending path metrics.

Unrolling the ACS recursion to perform two trellis iterations in a single cycles

has been used to improve throughput in [14,15].

2.1. TRELLIS UNROLLING 45

PM0

PM1 +

+

<

BM(1)

BM(0)

+

+

<

PM2

PM3

BM(3)

BM(2)

<

d0

d1

PM

Figure 2.5: 2T ACS unit.

This can be generalised to a T -T trellis, where T steps from the 1T trellis are

combined together such that 2T paths converge at each state. For example

23 = 8 paths must be compared in the 3T trellis shown in figure 2.6. A

11

00

01

10

Figure 2.6: 4 state 3T trellis.

T -T ACS unit comprises 2T two input adders which sum the previous path

metrics with the branch metrics, and a 2T − 1 two input minimiser to select

46 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

the smallest of the four new contending path metrics.

Unrolling the trellis in this manner is intended to to improve throughput,

at the expense of complexity. But it should be noted that continued un-

rolling achieves diminishing improvements in throughput, at the expense of

exponentially increasing area.

In particular, a single T -T ACS unit has a delay of T + 1 units and an area

of 2(T+1) − 1 units, since the 2T adders are completely in parallel, and the

2T − 1 comparators are constructed in a logarithmic tree.

Since a T -T ACS unit produces T outputs per cycles, whilst a 1T ACS unit

only produces a single output per cycle, the delay metric of importance is

delay per output. Therefore a 1T ACS unit has a delay per output of 2 unit,

whilst a T -T ACS unit has a delay per output of (T + 1)/T units.

Below is a table which summarises the complexity for T -T implementations.

T -T Delay Delay per output ACS area

1 2 2.00 3
2 3 1.50 7
3 4 1.33 15
4 5 1.25 31
T T + 1 (T + 1)/T 2T+1 − 1

Table 2.1: Complexity of trellis unrolling.

Table 2.1 shows that a 4T implementation, which is less than twice as fast

as a 1T implementation, has an area which is over 10 times greater. This

increase in area precludes the practical use of unrolled implementations. In

reality, designs over 2T are rarely used as the diminishing returns cannot be

justified.

2.2. ACS RETIMING 47

2.2 ACS Retiming

An improvement of the standard ACS unit can be achieved by retiming the

operations. Figure 2.7 shows how the operations are regrouped into retimed

cycles.

+

+

<

+

+

<

P M
(1)
1 (t)

P M
(0)
0 (t)

BM
(0)
0 (t + 1)

BM
(0)
1 (t + 1)

BM
(1)
0 (t + 1)

BM
(1)
1 (t + 1)

P M(1)(t + 1)

P M(0)(t + 1)

+

+

<

BM1(t)

BM0(t)

P M(t)

P M0(t − 1)

P M1(t − 1)

Figure 2.7: Two iterations of 1T ACS unit, with 1T CSA retiming region
indicated.

Having retimed the ACS unit, we obtained a modified unit in which the order

of operations is compare-select-add, hence we refer to this retimed structure

as a CSA unit.

48 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

<

+

+

BM1(t + 1)

BM0(t + 1)

PM(t) + BM1(t + 1)

PM(t) + BM0(t + 1)

PM1(t− 1) + BM1(t)

PM0(t− 1) + BM0(t)

Figure 2.8: Unoptimised 1T CSA unit.

Then by reordering the multiplexer and adders, which results in twice as

many adders, we obtain the optimised CSA architecture where the branch

metric addition is performed in parallel with the comparison [16,17].

+

+

+

+

<

PM(t) + BM1(t + 1)BM1(t + 1)

BM0(t + 1) PM + BM0(t + 1)

PM(t− 1) + BM1(t)

PM(t− 1) + BM0(t)

Figure 2.9: Optimised 1T CSA unit.

The result is an architecture where the critical path consists of a single adder,

2.3. ACS BIT LEVEL PIPELINING 49

followed by a multiplexer, thereby eliminating an entire comparator from the

critical path.

Note that in the higher radix generalisation of the CSA unit, the branch

metric addition can be performed in parallel with the comparison of the

incoming path metrics (with pre-added branch metrics). However the com-

parison will be between 2T terms for a T -T CSA unit, which requires T two

input comparators. Therefore the delay per output remains constant as radix

increases, hence performance cannot be improved significantly by using high

radix architectures.

2.3 ACS Bit Level Pipelining

The conventional ACS unit cannot be pipelined due to the dependence of

the inputs of the current cycle, to the outputs of the previous cycle.

Bit-level pipelining utilises a redundant number system [18] and carrysave

addition [19–21] in which the ACS operation can be expressed in such a way

that carries only propagate to the next bit position. A practical implemen-

tation was shown in [15].

The critical operation is reduced to the time taken to compute a single bit

slice which is constant regardless of the bit width of the path metrics. How-

ever, the small bit widths of typical path metrics, the redundant number

system and carrysave representation make the implementation of the single

slice sufficiently complex to yield little improvement over CSA schemes.

50 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

2.4 Loop Elimination

In this section, we introduce the principle of loop elimination [3], which aims

to increase the throughput of Viterbi detectors further than unrolling, and

to achieve this without an exponential increase in complexity.

Consider all paths which converge at a given final state of a K time step

section of a 1T trellis, where K is the constraint length. For example, consider

all paths converging at state 1 of 3 time slices of a 4 state trellis, as shown

in figure 2.10

11

00

01

10

Figure 2.10: All paths converging at state 1 of 3 time slices of a 4 state trellis.

Note that there are exactly two paths connecting each initial state to each

final state, as illustrated in our example 2.11.

11

00

01

10

Figure 2.11: Exactly two paths connecting initial and final state.

2.4. LOOP ELIMINATION 51

Definition 2.4.1 (Loop). We define a loop to be the portion of two distinct

paths between an initial state and a final state through which both paths

pass. The two sides of the loop correspond to the route through the trellis

traversed by the two distinct paths. The length of the loop is defined to be

the number of time steps between the initial and final states.

In figure 2.11, we illustrate a loop of length 3, from initial state 2, to final

state 1. The two sides of the loop are shown in blue and red.

Let us consider the 8 contending paths being considered at the final state of

our example. These 8 paths can be characterised by the states the pass

through. In particular, the paths are {0, 0, 0, 1}, {2, 0, 0, 1}, {1, 2, 0, 1},
{3, 2, 0, 1}, {0, 1, 2, 1}, {2, 1, 2, 1}, {1, 3, 2, 1} and {3, 3, 2, 1}.

Therefore the surviving path metric is determined by

PM
(t)
1 = min

{
PM

(t−3)
0 + BM

(t−2)
0,0 + BM

(t−1)
0,0 + BM

(t)
0,0,

PM
(t−3)
2 + BM

(t−2)
2,0 + BM

(t−1)
0,0 + BM

(t)
0,0,

PM
(t−3)
1 + BM

(t−2)
1,2 + BM

(t−1)
2,0 + BM

(t)
0,0,

PM
(t−3)
3 + BM

(t−2)
3,2 + BM

(t−1)
2,0 + BM

(t)
0,0,

PM
(t−3)
0 + BM

(t−2)
0,1 + BM

(t−1)
1,2 + BM

(t)
2,0,

PM
(t−3)
2 + BM

(t−2)
2,1 + BM

(t−1)
1,2 + BM

(t)
2,0,

PM
(t−3)
1 + BM

(t−2)
1,3 + BM

(t−1)
3,2 + BM

(t)
2,0,

PM
(t−3)
3 + BM

(t−2)
3,3 + BM

(t−1)
3,2 + BM

(t)
2,0

}

(2.4.1)

52 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

+

+

<

BM(1)

+

+

<

BM(3)

<

+

+

<

+

+

<

<

BM(7)

BM(5)

<

PM

d2

d1

d0

PM7

PM6

PM5

PM4

PM3

PM2

PM1

PM0

BM(2)

BM(0)

BM(4)

BM(6)

Figure 2.12: 3T ACS unit.

Note that we can collect together terms which originate at the same initial

2.4. LOOP ELIMINATION 53

state, and factor the path metric to those initial states.

PM
(t)
1 = min

{
PM

(t−3)
0 + min

{
BM

(t−2)
0,0 + BM

(t−1)
0,0 + BM

(t)
0,0,

BM
(t−2)
0,1 + BM

(t−1)
1,2 + BM

(t)
2,0

}
,

PM
(t−3)
1 + min

{
BM

(t−2)
1,2 + BM

(t−1)
2,0 + BM

(t)
0,0,

BM
(t−2)
1,3 + BM

(t−1)
3,2 + BM

(t)
2,0

}
,

PM
(t−3)
2 + min

{
BM

(t−2)
2,0 + BM

(t−1)
0,0 + BM

(t)
0,0,

BM
(t−2)
2,1 + BM

(t−1)
1,2 + BM

(t)
2,0

}
,

PM
(t−3)
3 + min

{
BM

(t−2)
3,2 + BM

(t−1)
2,0 + BM

(t)
0,0,

BM
(t−2)
3,3 + BM

(t−1)
3,2 + BM

(t)
2,0

}
,
}

(2.4.2)

The collected terms correspond to loops in the trellis, with the minimisation

selecting the shortest side of the loop and eliminating the longest side of

the loop. We refer to the selection of the shortest side of a loop as loop

elimination.

For example min
{

BM
(t−2)
2,0 +BM

(t−1)
0,0 +BM

(t)
0,0, BM

(t−2)
2,1 +BM

(t−1)
1,2 +BM

(t)
2,0

}

corresponds to the loop shown in figure 2.11.

Notice that loop elimination is independent of the global path metric, and

depends only on the branch metrics along the loop itself. This is advanta-

geous for hardware implementations as loops can be eliminated outside of

the critical path metric feedback loop, resulting in a minimisation of fewer

terms and consequently a shorter critical path.

For example, let BMi be the combined branch metric for the surviving side

54 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

of the loop from initial state i.

BM0 = min
{

BM
(t−2)
0,0 + BM

(t−1)
0,0 + BM

(t)
0,0, BM

(t−2)
0,1 + BM

(t−1)
1,2 + BM

(t)
2,0

}

BM1 = min
{

BM
(t−2)
1,2 + BM

(t−1)
2,0 + BM

(t)
0,0, BM

(t−2)
1,3 + BM

(t−1)
3,2 + BM

(t)
2,0

}

BM2 = min
{

BM
(t−2)
2,0 + BM

(t−1)
0,0 + BM

(t)
0,0, BM

(t−2)
2,1 + BM

(t−1)
1,2 + BM

(t)
2,0

}

BM3 = min
{

BM
(t−2)
3,2 + BM

(t−1)
2,0 + BM

(t)
0,0, BM

(t−2)
3,3 + BM

(t−1)
3,2 + BM

(t)
2,0

}

(2.4.3)

Then the path metric is calculated as the minimisation over four terms (iden-

tical to a 2T ACS unit), rather than eight (for the unmodified 3T ACS unit).

PM
(t)
1 = min

i∈{0,1,2,3}

{
PM

(t−3)
i + BMi

}
(2.4.4)

Consequently, the delay through the 3T ACS unit is the same as through a

2T ACS unit.

The unmodified 3T ACS unit is shown in figure 2.13. Note than inside each

red box, the same path metric enters both additions and can therefore be

push through the minimiser. This transformation results in figure 2.14, which

is identical to the 2T ACS unit shown in figure 2.5 if the initial branch metric

minimisations are precomputed.

2.4. LOOP ELIMINATION 55

+

+

<

BM(1)

+

+

<

BM(3)

<

+

+

<

+

+

<

<

BM(7)

BM(5)

<

PM

d2

d1

d0

PM3

PM3

PM2

PM2

PM1

PM1

PM0

PM0

BM(0)

BM(2)

BM(4)

BM(6)

Figure 2.13: 3T ACS unit with duplicated input path metrics. Red boxes
indicate region to be transformed.

56 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

<

<

<

PM

d2

d1

+

PM3

+

PM2

+

PM1

+

PM0

<

BM(6)

BM(7)

BM(5)

<

BM(4)

<

BM(3)

BM(2)

BM(1)

BM(0)

<

d0

Figure 2.14: 3T ACS unit with duplicated input path metrics, transformed
to a 2T ACS unit (shown in black).

Figure 2.15 shows the above example of loop elimination on the trellis. The

loops are clearly evident on the 3T trellis in figure 2.15(b), and having elim-

inated the loops, the trellis degenerated to a 2T trellis as shown in figure

2.15(e).

2.4. LOOP ELIMINATION 57

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

Figure 2.15: 4 state trellis illustrating loop elimination. (a) shows original
1T trellis. (b) equivalent 3T trellis. (c) compare sides of each loop. (d)
remove longest side of each loop. (e) 3T trellis with loops eliminated.

Loop elimination can be repeatedly applied. For example, consider a the two

58 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

state trellis in figure 2.16(a).

First eliminate the loops in each 2T trellis section. This results in the trellis

shown in figure 2.16(b). Note that there are now loops of length 4 which can

be eliminated, resulting in trellis figure 2.16(c), which in turn has loops of

length 8.

1

0

1

0

1

0

1

0

Output 0

Output 1

Maximum Likelihood Path

Figure 2.16: 2 state trellis illustrating recursive loop elimination.

This results in a highly parallel Viterbi implementation, which in hardware

has a delay proportional to the logarithm of the block length.

2.4. LOOP ELIMINATION 59

2.4.1 Loop Elimination Complexity

Since the shortest loops occur in a K-T trellis section, where K is the con-

straint length, we can only utilise loop elimination for T -T trellis sections

when T ≥ K.

Therefore we analyse two examples when K = 2 and K = 4, before analysing

the general case.

Below is a table comparing the complexity for high radix implementations

using loop elimination for constraint length K = 2.

T Delay Delay/output ACS area Loop elim. area Total area

1 2 2.00 3 0 3
2 2 1.00 3 2 5
3 2 0.67 3 6 9
4 2 0.50 3 14 17
T 2 2/T 3 2(2T−1 − 1) 2T + 1

Table 2.2: Complexity of loop elimination for K = 2.

Note that when K = 2, the delay through an ACS unit is always equivalent

to that of a 1T ACS unit.

Below is a table comparing the complexity for high radix implementations

using loop elimination for constraint length K = 4.

T Delay Delay/output ACS area Loop elim. area Total area

1 2 2.00 3 0 3
2 3 1.50 7 0 7
3 4 1.33 15 0 15
4 4 1.00 15 8 23
T 4 4/T 15 8(2T−3 − 1) 2T + 7

Table 2.3: Complexity of loop elimination for K = 4.

60 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

Note that when K = 4, the delay through an ACS unit never exceeds that

of a 3T ACS unit.

Let us now consider the general case of a constraint length K trellis, and

compare loop elimination against the standard loop unrolling algorithm.

Below is a table comparing the complexity for high radix implementations

using trellis unrolling and loop elimination for constraint length K.

Method Delay Delay/output ACS area Loop elimination area Total area

Trellis unrolling T + 1 (T + 1)/T 2T+1 − 1 0 2T+1 − 1
Loop elimination K K/T 2K − 1 2K−1(2T−K+1 − 1) 2T + 2K−1 − 1

Table 2.4: Complexity comparison of trellis unrolling against loop elimina-
tion.

Note that with loop elimination, the delay through an ACS unit never exceeds

that of a K-T ACS unit, but the delay increases linearly when using trellis

unrolling.

However the total area for both implementations increases exponentially with

T . In the next section we show how the complexity of loop elimination can

be reduced in order to reduce the area.

2.5 Asymptotic Complexity of PMU

In this section we determine a bound for the complexity of the path metric

unit comprising the ACS unit and the arithmetic required to sum the 1T

branch metrics, but not including the calculation of the 1T branch metrics

themselves.

2.5. ASYMPTOTIC COMPLEXITY OF PMU 61

We shall consider two implementations of a K-T Viterbi detector for a con-

volutional code with constraint length K. The first implementation is a 1T

implementation unrolled T times, whilst the second is a true K-T implemen-

tation.

The advantage of the K-T implementation over the unrolled 1T implemen-

tation is the critical feedback loop only contains 1 addition and K minimisa-

tions, whilst the unrolled 1T implementation contains both K additions and

minimisations.

Therefore the K-T implementation is faster, but it is useful to understand

the trade-off between performance and complexity.

2.5.1 Complexity of Unrolled 1T Implementation

For each of the 2K−1 states at each of the K time slices, we need to compute

P = min(P0 + B0, P1 + B1) (2.5.1)

which requires three operations. Therefore we require a total of

C1T = 3K2K−1 (2.5.2)

operations, or

C1T = 3K (2.5.3)

operations per state.

62 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

2.5.2 Complexity of K-T Implementation

Each of the final 2K−1 states is connected by exactly two paths to each initial

state. We can compute the new path metric by summing the branch metrics

along each path, then eliminate the loop to leave exactly one path from

each initial state, finally minimising between the 2K−1 remaining paths. We

shall refer to the operation count for each of the above as CB, CL and CM

respectfully.

The final minimisation for each state between the 2K−1 remaining paths

requires 2K−1 additions to add the accumulated branch metrics to the old

path metrics, and 2K−1 − 1 minimisations to find the minimum of the 2K−1

contenders. This requires a total of

CM = 22K−1 − 2K−1 (2.5.4)

operations.

We also need to eliminate the loops from each initial state to each final

state by minimising between the sum of the branch metrics along each path.

Therefore this requires

CL = 22K−2 (2.5.5)

minimisations.

In order to calculate the sum of the branch metrics along each path in the

minimum number of operations, we form the additions using a binary tree.

For simplicity, assume that K = 2k is a power of two.

2.5. ASYMPTOTIC COMPLEXITY OF PMU 63

At the first level of the tree, we separate the radix-2 trellis into K/2 2T

sections. Each intermediate state has two paths entering and two paths

leaving, therefore we require 4 additions per state to form each new radix-4

section of the trellis. We now have a radix-4 trellis of length K/2-T.

Similarly at the second level of the tree, we separate the radix-4 trellis into

K/4 2T sections. Each intermediate state has four paths entering and four

paths leaving, therefore we require 16 additions per state to form each new

radix-16 section of the trellis. We now have a radix-16 trellis of length K/4-T.

We continue this process until at the final K-th level we are left with a radix

22k
= 2K trellis of length 1T. To summarise the above, we repeatedly increase

the radix of the trellis by combining neighbouring sections. This requires the

following operations

Level Initial Radix Final Radix Adders/State Sections Total Adders
1 2 4 4 K/2 4 ·K/2 · 2K−1

2 4 16 16 K/4 16 ·K/4 · 2K−1

3 16 256 256 K/8 256 ·K/8 · 2K−1

...
...

...
...

...
...

i 22i−1
22i

22i

K/2i 22i ·K/2i · 2K−1

...
...

...
...

...
...

k 22k−1
= 2K−2 22k

= 2K 2K 1 2K · 1 · 2K−1

Table 2.5: Number of operations required to sum branch metrics.

64 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

Therefore the total number of additions required is

CB = K2K−1

log2 K∑
i=1

22i

2i

= K2K−1

log2 K∑
i=1

22i−i

= 22K−1 + K2K−1

(log2 K)−1∑
i=1

22i−i

= 22K−1 + K2K−1

log2
K
2∑

i=1

22i−i

(2.5.6)

Since 2i − i ≥ 1 for i ≥ 1, a lower bound for CB is given by

CB ≥ 22K−1 + K2K−1

log2
K
2∑

i=1

2

= 22K−1 +

(
K log2

K

2

)
2K

(2.5.7)

The terms in (2.5.6) are monotonically increasing, therefore the each term in

the sum may be upper bounded by the final term.

CB ≤ 22K−1 + K2K−1

log2
K
2∑

i=1

22log2
K
2 −log2

K
2

= 22K−1 + K2K−1

log2
K
2∑

i=1

2

K
2

K
2

= 22K−1 +

(
log2

K

2

)
2

3K
2

(2.5.8)

Therefore the operation count to calculate the branch metrics and eliminate

2.5. ASYMPTOTIC COMPLEXITY OF PMU 65

the loops is bounded by

3 · 22K−2 +

(
K log2

K

2

)
2K ≤ CB + CL ≤ 3 · 22K−2 +

(
log2

K

2

)
2

3K
2

(2.5.9)

and the total operation count

C = CB + CL + CM (2.5.10)

is bounded by

5 · 22K−2 − 2K−1 +
(

K log2

K

2

)
2K ≤ C ≤ 5 · 22K−2 − 2K−1 +

(
log2

K

2

)
2

3K
2

(2.5.11)

Hence the number of operations per state is bounded by

5 · 2K−1 − 1 + 2K log2

K

2
≤ C ≤ 5 · 2K−1 − 1 +

(
log2

K

2

)
2

K
2
−1 (2.5.12)

If we compare the leading order term of (2.5.3) against the leading order

term of (2.5.12), we see that in order to take advantage of high radix imple-

mentations and loops using a K-T implementation, the complexity increases

exponentially compared to simple unrolling whose complexity increases lin-

early.

However we have shown loop elimination offers a real performance advantage.

In the next section we shall see how path invariants can be utilised to reduce

the complexity and make high radix implementation practical to implement.

66 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

2.6 Invariants

The first invariant we consider allows us to determine which of the two con-

tending paths that form a loop is shortest, for all of the 2K−1 states, by

performing only K multiplications.

To determine the surviving path to a state, the branch metrics are added to

the old path metrics, and the smaller of the two values is chosen.

PM
(t)
i = min

{
PM

(t−K)
0 + BM0,i, PM

(t−K)
1 + BM1,i

}
(2.6.1)

When determining the shortest side of a loop, both sides originate from the

same state. Therefore PM
(t−K)
0 = PM

(t−K)
1 .

PM
(t)
i = PM

(t−K)
0 + min {BM0,i, BM1,i} (2.6.2)

Therefore we must find which branch metric is the smallest. If we assume

the Euclidean metric, the branch metrics are given by

BM0,i =
K−1∑

k=0

(rt−k − ak)
2

BM1,i =
K−1∑

k=0

(rt−k − bk)
2

(2.6.3)

where {ak} and {bk} are the branch labels on the two sides of the loop.

To determine the smallest branch metric, we must compare them

∆ = BM0,i −BM1,i (2.6.4)

2.6. INVARIANTS 67

But we can simplify this as follows

∆ = BM0,i −BM1,i

=
K−1∑

k=0

(rt−k − ak)
2 −

K−1∑

k=0

(rt−k − bk)
2

=
K−1∑

k=0

(rt−k − ak)
2 − (rt−k − bk)

2

=
K−1∑

k=0

a2
k − b2

k − 2(ak − bk)rt−k

(2.6.5)

For every loop, the branch labels {ak} and {bk} are different. But the dif-

ference between the branch labels in invariant, and as we will show below, is

actually related to the generator polynomial

ak − bk = gk (2.6.6)

where {gk} are the generator polynomial coefficients. Therefore

∆ =
K−1∑

k=0

a2
k − b2

k − 2gkrt−k (2.6.7)

The {a2
k} and {b2

k} terms are constants, which can be precomputed, and the

multiplication with the received signal can be shared amounts all the loops.

This greatly simplifies the loop elimination algorithm implementation, and

gives us our first invariant.

Theorem 2.6.1. Given a Viterbi decoder of constraint length k, with en-

coding given by polynomial g0 + g1D + . . . + gk−1D
k−1, then the difference

between branch labels along any loop is given by ±gi for i = 0, . . . , k − 1.

68 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

Proof. The encoder has 2k−1 states. By definition, the two sides of a loop

begin and end in the same state, say initial state α0 . . . αk−2 and final state

β0 . . . βk−2.

A path through the trellis from the initial state to the final state must pass

through k − 1 other states between:

State Number State

Initial α0 . . . αk−2

1 α1 . . . αk−2x0

2 α2 . . . αk−2x0x1

n αn . . . αk−2x0 . . . xn−1

k − 2 αk−1x0 . . . xk−3

k − 1 x0 . . . xk−2

Final x1 . . . xk−1 = β0 . . . βk−2

Table 2.6: Path traversed by loop.

Hence xi = βi−1 for i = 1, . . . , k − 1.

We observe that x0 can be either 0 or 1 and this gives the two sides of the

loop.

Let ai and bi be the branch labels corresponding to the sides of the loop given

by x0 = 0 and x0 = 1 respectfully.

The state transitions for each side of the loop are:

Side Transitions

a 0, β0, . . . , βk−2

b 1, β0, . . . , βk−2

Table 2.7: Transitions along each side of loop.

2.6. INVARIANTS 69

Therefore

a0 = g00 + g1αk−2 + g2αk−3 + . . . + gk−1α0

b0 = g01 + g1αk−2 + g2αk−3 + . . . + gk−1α0

(2.6.8)

Hence b0 − a0 = g0.

For i > 0

ai =
i−1∑
j=0

gjβi−j + gi0 +
k−1∑

j=i+1

gjαk−1+i−j

bi =
i−1∑
j=0

gjβi−j + gi1 +
k−1∑

j=i+1

gjαk−1+i−j

(2.6.9)

Hence bi − ai = gi for all i = 0, . . . , k − 1.

The second invariant we consider allows us to determine the shortest path

amongst a pair of loops of length K from an initial state to a pair of neigh-

bouring final states. In particular, we make use of the following identity

min(a, b) =
1

2
(a + b− |a− b|) (2.6.10)

This allows us to calculate the difference between a pair of minimums as

follows

min(a, b)−min(c, d) =
1

2
(a + b− c− d)− 1

2
(|a− b| − |c− d|) (2.6.11)

Above we derived an invariant for absolute difference between branch labels,

but we can also derive an invariant for the following branch metric relation

ai + bi − ci − di.

Theorem 2.6.2. Given a Viterbi decoder of constraint length k, with en-

70 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

coding given by polynomial g0 + g1D + . . . + gk−1D
k−1 and two loops from

state α0 . . . αk−2 to states β0 . . . βk−30 and β0 . . . βk−31, then

ai + bi − ci − di =





±2g0 if i = k − 1

0 if i = 0, . . . , k − 2

(2.6.12)

where ai, bi, ci, di are the branch labels corresponding to the sides of the loops

as shown in figure 2.17.

11

00

01

10

11

00

01

10

a

b
c

d
d2

c2

b2

a2

Figure 2.17: Two loops with same initial state and neighbouring final states.

Proof. A path through the trellis from the initial state to the final state must

pass through k − 1 other states between:

State Number State State

Initial α0 . . . αk−2 α0 . . . αk−2

1 α1 . . . αk−2x0 α1 . . . αk−2y0

2 α2 . . . αk−2x0x1 α2 . . . αk−2y0y1

n αn . . . αk−2x0 . . . xn−1 αn . . . αk−2y0 . . . yn−1

k − 2 αk−2x0 . . . xk−3 αk−2y0 . . . yk−3

k − 1 x0 . . . xk−2 y0 . . . yk−2

Final x1 . . . xk−1 = β0 . . . βk−30 y1 . . . yk−1 = β0 . . . βk−31

Table 2.8: Path traversed by each loop.

Hence xk−1 = 0, yk−1 = 1, xi = βi−1 and yi = βi−1 for i = 1, . . . , k − 2.

2.6. INVARIANTS 71

We observe that x0 can be either 0 or 1 and this gives the two sides of the

first loop. Similarly that y0 can be either 0 or 1 and this gives the two sides

of the second loop.

Let ai, bi, ci and di be the branch labels corresponding to the sides of the

loops given by y0 = 1, y0 = 0, x0 = 1 and x0 = 0 respectfully.

The state transitions for each side of the loop are:

Side Transitions

a 1, β0, . . . , βk−3, 1
b 0, β0, . . . , βk−3, 1
c 1, β0, . . . , βk−3, 0
d 0, β0, . . . , βk−3, 0

Table 2.9: Transitions along each side of each loop.

Therefore

ak−1 = g01 + g1βk−3 + g2βk−4 + . . . + gk−2β0 + gk−11

bk−1 = g01 + g1βk−3 + g2βk−4 + . . . + gk−2β0 + gk−10

ck−1 = g00 + g1βk−3 + g2βk−4 + . . . + gk−2β0 + gk−11

dk−1 = g00 + g1βk−3 + g2βk−4 + . . . + gk−2β0 + gk−10

(2.6.13)

Hence ak−1 + bk−1 − ck−1 − dk−1 = 2g0.

72 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

For i = 0, . . . , k − 2

ai =
i−1∑
j=0

gjβi−j + gi1 +
k−1∑

j=i+1

gjαk−1+i−j

bi =
i−1∑
j=0

gjβi−j + gi0 +
k−1∑

j=i+1

gjαk−1+i−j

ci =
i−1∑
j=0

gjβi−j + gi1 +
k−1∑

j=i+1

gjαk−1+i−j

di =
i−1∑
j=0

gjβi−j + gi0 +
k−1∑

j=i+1

gjαk−1+i−j

(2.6.14)

Hence ai + bi − ci − di = 0 for all i = 0, . . . , k − 2.

The third invariant we consider allows us to determine the shortest path

amongst a pair of loops of length K from a pair of neighbouring initial states

to a single final state.

Theorem 2.6.3. Given a Viterbi decoder of constraint length k, with en-

coding given by polynomial g0 + g1D + . . . + gk−1D
k−1 and two loops from

states α0 . . . αk−30 and α0 . . . αk−31 to state β0 . . . βk−2, then

ai + bi − ci − di =





±2gi−1 if i = 0, . . . , k − 2

0 if i = k − 1

(2.6.15)

2.6. INVARIANTS 73

11

00

01

10

a

b

d

11

00

01

10

d0

c

b0

c0

a0

Figure 2.18: Two loops with same final state and neighbouring initial states.

Proof. A path through the trellis from the initial state to the final state must

pass through k − 1 other states between:

State Number State State

Initial α0 . . . αk−30 α0 . . . αk−31
1 α1 . . . αk−30x0 α1 . . . αk−31y0

2 α2 . . . αk−30x0x1 α2 . . . αk−31y0y1

n αn . . . αk−30x0 . . . xn−1 αn . . . αk−31y0 . . . yn−1

k − 3 αk−30x0 . . . xk−3 αk−31y0 . . . yk−3

k − 2 0x0 . . . xk−3 1y0 . . . yk−3

k − 1 x0 . . . xk−2 y0 . . . yk−2

Final x1 . . . xk−1 = β0 . . . βk−2 y1 . . . yk−1 = β0 . . . βk−2

Table 2.10: Path traversed by each loop.

Hence xi = βi−1 and yi = βi−1 for i = 1, . . . , k − 1.

We observe that x0 can be either 0 or 1 and this gives the two sides of the

first loop. Similarly that y0 can be either 0 or 1 and this gives the two sides

of the second loop.

Let ai, bi, ci and di be the branch labels corresponding to the sides of the

loops given by y0 = 1, y0 = 0, x0 = 1 and x0 = 0 respectfully.

The state transitions for each side of the loop are:

74 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

Side Transitions

a 1, β0, . . . , βk−2

b 0, β0, . . . , βk−2

c 1, β0, . . . , βk−2

d 0, β0, . . . , βk−2

Table 2.11: Transitions along each side of each loop.

Therefore

ak−1 = g0βk−2 + g1βk−3 + . . . + gk−2β0 + gk−11

bk−1 = g0βk−2 + g1βk−3 + . . . + gk−2β0 + gk−10

ck−1 = g0βk−2 + g1βk−3 + . . . + gk−2β0 + gk−11

dk−1 = g0βk−2 + g1βk−3 + . . . + gk−2β0 + gk−10

(2.6.16)

Hence ak−1 + bk−1 − ck−1 − dk−1 = 0.

For i = 0, . . . , k − 2

ai =
i−1∑
j=0

gjβi−j + gi1 + gi+11 +
k−1∑

j=i+2

gjαk−1+i−j

bi =
i−1∑
j=0

gjβi−j + gi0 + gi+11 +
k−1∑

j=i+2

gjαk−1+i−j

ci =
i−1∑
j=0

gjβi−j + gi1 + gi+10 +
k−1∑

j=i+2

gjαk−1+i−j

di =
i−1∑
j=0

gjβi−j + gi0 + gi+10 +
k−1∑

j=i+2

gjαk−1+i−j

(2.6.17)

Hence ai + bi − ci − di = 2gi+1 for all i = 0, . . . , k − 2.

The final invariant we consider allows us to determine the shortest path

2.6. INVARIANTS 75

amongst a pair of loops of length K from an arbitrary pair of initial states

to a single final state.

Theorem 2.6.4. Given a Viterbi decoder of constraint length k, with en-

coding given by polynomial g0 + g1D + . . . + gk−1D
k−1 and two loops from

states α0 . . . αk−2 and β0 . . . βk−2 to state γ0 . . . γk−2, then

ai + bi − ci − di =





2
∑k−1

j=i+1 gj(βk−1+i−j − αk−1+i−j) if i = 0, . . . , k − 2

0 if i = k − 1

(2.6.18)

11

00

01

10

d

11

00

01

10

d0

c

a

b

b0

c0

a0

Figure 2.19: Two loops with same final state and any two initial states.

Proof. A path through the trellis from the initial state to the final state must

pass through k − 1 other states between:

State Number State State

Initial α0 . . . αk−2 β0 . . . βk−2

1 α1 . . . αk−2x0 β1 . . . βk−2y0

2 α2 . . . αk−2x0x1 β2 . . . βk−2y0y1

n αn . . . αk−2x0 . . . xn−1 βn . . . βk−2y0 . . . yn−1

k − 2 αk−2x0 . . . xk−3 βk−2y0 . . . yk−3

k − 1 x0 . . . xk−2 y0 . . . yk−2

Final x1 . . . xk−1 = γ0 . . . γk−2 y1 . . . yk−1 = γ0 . . . γk−2

Table 2.12: Path traversed by each loop.

Hence xi = γi−1 and yi = γi−1 for i = 1, . . . , k − 1.

76 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

We observe that x0 can be either 0 or 1 and this gives the two sides of the

first loop. Similarly that y0 can be either 0 or 1 and this gives the two sides

of the second loop.

Let ai, bi, ci and di be the branch labels corresponding to the sides of the

loops given by y0 = 1, y0 = 0, x0 = 1 and x0 = 0 respectfully.

The state transitions for each side of the loop are:

Side Transitions

a 1, γ0, . . . , γk−2

b 0, γ0, . . . , γk−2

c 1, γ0, . . . , γk−2

d 0, γ0, . . . , γk−2

Table 2.13: Transitions along each side of each loop.

Therefore

ak−1 = g0γk−2 + g1γk−3 + . . . + gk−2γ0 + gk−11

bk−1 = g0γk−2 + g1γk−3 + . . . + gk−2γ0 + gk−10

ck−1 = g0γk−2 + g1γk−3 + . . . + gk−2γ0 + gk−11

dk−1 = g0γk−2 + g1γk−3 + . . . + gk−2γ0 + gk−10

(2.6.19)

Hence ak−1 + bk−1 − ck−1 − dk−1 = 0.

2.7. 4-STATE WHITE NOISE VITERBI DETECTOR IMPLEMENTATIONS77

For i = 0, . . . , k − 2

ai =
i−1∑
j=0

gjγi−j + gi1 +
k−1∑

j=i+1

gjβk−1+i−j

bi =
i−1∑
j=0

gjγi−j + gi0 +
k−1∑

j=i+1

gjβk−1+i−j

ci =
i−1∑
j=0

gjγi−j + gi1 +
k−1∑

j=i+1

gjαk−1+i−j

di =
i−1∑
j=0

gjγi−j + gi0 +
k−1∑

j=i+1

gjαk−1+i−j

(2.6.20)

Hence

ai + bi − ci − di = 2
k−1∑

j=i+1

gjβk−1+i−j − 2
k−1∑

j=i+1

gjαk−1+i−j

= 2
k−1∑

j=i+1

gj(βk−1+i−j − αk−1+i−j)

(2.6.21)

for all i = 0, . . . , k − 2.

2.7 4-State White Noise Viterbi Detector Im-

plementations

In this section we describe and compare various implementations of a pro-

grammable 4-state white noise Viterbi detector, where the ideal signal is

given by

I(xi−2xi−1xi) = g0xi + g1xi−1 + g2xi−2 (2.7.1)

78 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

where xk ∈ {0, 1}.

We shall compare a standard 2T implementation against a 3T implementa-

tion with loop elimination and a 3T implementation with loop elimination

and path invariants.

Note that as a result of loop elimination, all these implementations feature

the same 2T ACS unit, therefore we only need consider the area of the branch

metric unit.

2.7.1 Standard 2T Implementation

The branch metric unit for the standard 2T implementation is constructed

by combining the outputs of 2 independent 1T BMU slices.

11

00

01

10

11

00

01

10

Figure 2.20: 4 state 2T trellis.

Each 1T BMU produces 8 branch metrics which must be summed together to

produce the 16 branch metrics required for the higher radix implementation

2.7. 4-STATE WHITE NOISE VITERBI DETECTOR IMPLEMENTATIONS79

according to the following rule

BM (T)(xi−T−1 . . . xi, ri−T+1 . . . ri) =
T−1∑

k=0

BM (1)(xi−k−2xi−k−1xi−k, ri−k)

(2.7.2)

for a T -T BMU.

The branch metric for a single 1T BMU slice is given by the following

BM (1)(xi−2xi−1xi, ri) = I(xi−2xi−1xi)
2 − 2riI(xi−2xi−1xi). (2.7.3)

Note that the I(xi−2xi−1xi)
2 term is independent of the received signal, and

can therefore be pre-programmed along with the coefficients gk.

But the riI(xi−2xi−1xi) term does depend on the received signal. By calculat-

ing the following intermediate results using 3 multiplications and 4 additions

M0 = rig0 M1 = rig1 M2 = rig2

A0 = M0 + M1 A1 = M0 + M2 A2 = M1 + M2 A3 = A0 + M2

(2.7.4)

we can calculate all 8 terms as follows

riI(000) = 0 riI(001) = M0 riI(010) = M1 riI(011) = A0

riI(100) = M2 riI(101) = A1 riI(110) = A2 riI(111) = A3

(2.7.5)

To combine the received signal dependent and independent terms requires a

further 7 additions1.

1One of the additions is degenerate since at least one of the operands is zero, therefore
only 7 of the 8 additions are non-trivial.

80 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

Therefore the total number of operation required to compute all branch met-

rics in a 1T BMU slice is 3 multiplications and 11 additions.

The 2T BMU therefore consists of 6 multiplications and 22 additions for the

1T BMU slices, plus 13 additions2 to combine the 1T branch metrics together

to form the 16 2T branch metrics.

The following table summarises the complexity of the standard 2T imple-

mentation.

BMU Implementation Adders Multipliers Outputs/Cycle

2T 35 6 2

Table 2.14: Complexity of 2T implementation.

2.7.2 3T Implementation with Loop Elimination

The branch metric unit for the 3T implementation with loop elimination

is constructed by combining the outputs of 3 independent 1T BMU slices,

which produces 32 branch metrics arranged in 16 loops. The loops are then

eliminated, and the remaining 16 branch metrics are fed to the 2T ACS unit.

11

00

01

10

11

00

01

10

11

00

01

10

Figure 2.21: 4 state 3T trellis.

To combine the branch metrics from the three independent 1T BMU slices,

2Three of the additions are degenerate since at least one of the operands is zero, there-
fore only 13 of the 16 additions are non-trivial.

2.7. 4-STATE WHITE NOISE VITERBI DETECTOR IMPLEMENTATIONS81

we first combine a pair of 1T BMU slices as we did for the standard 2T

implementation.

The 16 branch metrics from the 2T BMU slice must then be combined with

the 8 branch metrics from the remaining 1T BMU slice to produce the 32

branch metrics. This requires 27 additions3 which means a total of 3 multi-

plications and 38 additions are required in addition to the standard 2T BMU

to generate the 32 branch metrics.

Finally we need to eliminate the loops by comparing the branch metrics

which form the sides of each loop. This requires a further 15 minimisations4,

which we shall count as 15 additions since the complexity of an addition and

minimisation is comparable.

The following table summarises the complexity of the 2T standard imple-

mentation and the 3T implementation with loop elimination.

BMU Implementation Adders Multipliers Outputs/Cycle

2T 35 6 2
3T + Loops 88 9 3

Table 2.15: Complexity of 2T standard implementation and 3T implemen-
tation with loop elimination.

3Five of the additions are degenerate since at least one of the operands is zero, therefore
only 27 of the 32 additions are non-trivial.

4One of the minimisations is degenerate since at least one of the operands is zero,
therefore only 15 of the 16 minimisations are non-trivial.

82 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

2.7.3 3T Implementation with Loop Elimination and

Path Invariants

With the use of the invariants we proved earlier in this chapter, we can reduce

the complexity of the 3T BMU with loop elimination.

In the 3T BMU with loop elimination, we find the shortest of the two paths

from each initial state xi−4xi−3 to each final state xi−1xi.

BE(xi−4xi−3, xi−1xi) = min
(
BM (3)(xi−4xi−30xi−1xi), BM (3)(xi−4xi−31xi−1xi)

)

(2.7.6)

To take advantage of invariants, we rewrite the above expression in terms of

differences between the sides of loops and relative to the zero initial state.

BE(xi−4xi−3, xi−1xi) = BM (3)(000xi−1xi) + D(xi−4xi−3, xi−1xi)

+ max(0, ∆(xi−4xi−3, xi−1xi))

(2.7.7)

where

D(xi−4xi−3, xi−1xi) = BM (3)(xi−4xi−30xi−1xi)−BM (3)(000xi−1xi)

∆(xi−4xi−3, xi−1xi) = BM (3)(xi−4xi−31xi−1xi)−BM (3)(xi−4xi−30xi−1xi)

(2.7.8)

We can then use (2.6.7) to compute

∆(xi−4xi−3, xi−1xi) = G(xi−4xi−3, xi−1xi)− 2
2∑

k=0

g2−kri−k (2.7.9)

2.7. 4-STATE WHITE NOISE VITERBI DETECTOR IMPLEMENTATIONS83

where

G(xi−4xi−3, xi−1xi) =

2∑

k=0

(
I(xi−k−2xi−k−1xi−k)

2 |xi−2=1 −I(xi−k−2xi−k−1xi−k)
2 |xi−2=0

)

(2.7.10)

If we explicitly expand the term which is independent of the received signal

we find that

G(xi−4xi−3, xi−1xi) =

g2
0 + g2

1 + g2
2 + 2(g0g1 + g1g2)(xi−3 + xi−1) + 2g0g2(xi−4 + xi)

(2.7.11)

As a result there are only 9 different values this term can take since it depends

only on xi−3 +xi−1, xi−4 +xi ∈ {0, 1, 2}. These 9 values are pre-programmed

along with the coefficients gk.

Note that the term which depends on the received signal is independent of

both the initial and final states, and can be implemented in 3 multiplications

and 2 additions

2∑

k=0

g2−kri−k = g2ri + g1ri−1 + g0ri−2 (2.7.12)

A further 9 additions are required to add the term dependent on the re-

ceived signal to each of the 9 distinct terms independent of the received

signal, giving a total of 3 multiplications and 11 additions to compute all the

∆(xi−4xi−3, xi−1xi) terms.

Note that in twos complement arithmetic, the most significant bit repre-

84 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

sents the sign. Therefore by using a bitwise AND of each ∆ with the in-

verse of its own sign bit, we set negative values to zero and thus obtain

max(0, ∆(xi−4xi−3, xi−1xi)).

Next we compute

BM (3)(000xi−1xi) = BM (1)(000) + BM (1)(00xi−1) + BM (1)(0xi−1xi)

=
(
(g2

0 + g2
1)x

2
i−1 + 2g1g0xi−1xi + g2

0x
2
i

)

− (2(ri−1g0 + rig1)xi−1 + 2rig0xi)

(2.7.13)

Since xk ∈ {0, 1}, we can compute all 4 terms which depend on the received

signal using 3 multiplications and 2 additions, whilst the 4 distinct values for

the term which is independent of the received signal can be pre-programmed

along with the coefficients gk.

The terms dependent on the received signal can then be added to the terms

independent of the received signal using a further 3 additions5, resulting in

a total of 3 multiplications and 5 additions to compute all BM (3)(000xi−1xi)

terms.

Finally, we compute

D(xi−4xi−3, xi−1xi) = BM (3)(xi−4xi−30xi−1xi)−BM (3)(000xi−1xi)

=
(
(g2

1 + g2
2)x

2
i−3 + g2

2x
2
i−4 + 2g1g2xi−3xi−4 + 2g0g2xi−1xi−3

)

− (2(ri−2g1 + 2ri−1g2)xi−3 + 2ri−2g2xi−4)
(2.7.14)

5One of the additions is degenerate since at least one of the operands is zero, therefore
only 3 of the 4 additions are non-trivial.

2.7. 4-STATE WHITE NOISE VITERBI DETECTOR IMPLEMENTATIONS85

As before, since xk ∈ {0, 1}, we can compute all 4 terms which depend

on the received signal using 3 multiplications and 2 additions, whilst the 6

distinct values for the term which is independent of the received signal can

be pre-programmed along with the coefficients gk.

The terms dependent on the received signal can then be added to the terms

independent of the received signal using a further 5 additions6, resulting in a

total of 3 multiplications and 7 additions to compute all D(xi−4xi−3, xi−1xi)

terms.

We are now ready to sum the BM (3)(000xi−1xi) with the D(xi−4xi−3, xi−1xi)

terms. This requires only 9 additions since 5 of the possible 16 additions is

degenerate since at least one of the operands is zero.

Finally we must add the ∆(xi−4xi−3, xi−1xi) terms, which requires a further

15 non-trivial additions.

The following table summarises the complexity of each implementation we

have considered.

BMU Implementation Adders Multipliers Outputs/Cycle

2T 35 6 2
3T + Loops 88 9 3

3T + Loops + Invariants 47 9 3

Table 2.16: Complexity of various 4-state implementations.

In summary, we have demonstrated an architecture for a 3T 4-state pro-

grammable Viterbi detector which is 50% faster than the standard 2T im-

6One of the additions is degenerate since at least one of the operands is zero, therefore
only 3 of the 4 additions are non-trivial.

86 CHAPTER 2. HIGH THROUGHPUT VITERBI DETECTORS

plementation, yet has exactly the same ACS unit and a BMU which is less

than 50% larger.

This compares favourably to the standard 3T implementation in which the

ACS unit alone is at least twice the size of the standard 2T implementa-

tion, and only offers a modest improvement in performance due to the extra

comparison on the ACS unit critical path.

Chapter 3

High Throughput Viterbi

Decoders

The Viterbi decoders used in communications systems are essentially the

same as Viterbi detectors used in read channel, but the convolutional codes

are not determined by the channel as in read channel, but they are chosen

to meet the performance requirements, and there may be multiple encoder

outputs for each input. Modulo 2 arithmetic is also used.

For example, consider the K = 7 rate 1
2

convolutional code octal (171,133)

described below, which is used various industry standards including Q1900,

DVB, IEEE802.11a/b/g/n [22], IEEE802.16a [23], HiperAccess, HiperMan

and INTELSAT IESS-308/309.

87

88 CHAPTER 3. HIGH THROUGHPUT VITERBI DECODERS

This code has two output bits y
(0)
k , y

(1)
k for each input bit xk.

y
(0)
k = xk ⊕ xk−1 ⊕ xk−2 ⊕ xk−3 ⊕ xk−6

y
(1)
k = xk ⊕ xk−2 ⊕ xk−3 ⊕ xk−5 ⊕ xk−6

(3.0.1)

D D D D D D
Data Input

(133) Output

(171) Output

Figure 3.1: K = 7 rate 1
2

convolutional code octal (171,133).

In this chapter we introduce invariants to reduce the complexity of Viterbi

decoders, give a tight bound on the complexity and then apply the results

to the industry standard code described above.

3.1 Loop Invariants in Communications

Suppose we encode the original data with the convolutional code

yk = g0xk ⊕ g1xk−1 ⊕ . . .⊕ gK−1xk−K+1 (3.1.1)

3.1. LOOP INVARIANTS IN COMMUNICATIONS 89

The Euclidean branch metric is given by

bEuclidean = (r − yNRZ)2 (3.1.2)

where yNRZ ∈ {±1}. Let y = 1
2
(yNRZ + 1) such that y ∈ {0, 1}, then

bEuclidean = (r − yNRZ)2

= r2 + y2
NRZ − 2ryNRZ

= r2 + 1− 2r(2y − 1)

= (r + 1)2 − 4ry

(3.1.3)

Since the term (r + 1)2 is common to all branches, it can be neglected as

it has no effect when comparing branches in order to find the minimum.

Similarly the multiplicative factor 4 may also be neglected. Therefore by

removing common terms and scalar constants, we can choose the following

branch metric

b′ = −ry (3.1.4)

The branch metric can be simplified further by changing its sign. However

negation of the branch metrics requires the path metric to be calculated as

the maximum sum of branch metrics, rather than the minimum. Therefore

we choose the following branch metric

b = ry =





0 if y = 0

r if y = 1

(3.1.5)

90 CHAPTER 3. HIGH THROUGHPUT VITERBI DECODERS

which selects between the received signal and zero depending on the ideal

output, and note that we must maximise the path metric.

Consider a loop of length K from initial state i1i2 . . . iK−1 to final state

f1f2 . . . fK−1. Let B(1) and B(0) be the branch metrics corresponding to the

top and bottom sides of the loop, where the top side of the loop corresponds

to the path through state i2 . . . iK−11 and the bottom side of the loop corre-

sponds to the path through state i2 . . . iK−10.

To eliminate one side of the loop, we need to compute max(B(1), B(0)) which

we can do using the following identity

max(B(1), B(0)) =
1

2
(B(1) + B(0)) +

1

2

∣∣B(1) −B(0)
∣∣ (3.1.6)

Therefore we need to consider how to calculate branch metric sums and

differences on the loop.

B(1) =
K−1∑

k=0

b
(1)
k =

K−1∑

k=0

rky
(1)
k

B(0) =
K−1∑

k=0

b
(0)
k =

K−1∑

k=0

rky
(0)
k

(3.1.7)

Consider the ideal output at k-th step (0 ≤ k ≤ K − 1). The state to the

right of the k-th time slice for the upper and lower paths is

s
(1)
k = {ik+2 . . . iK−11f1 . . . fk}

s
(0)
k = {ik+2 . . . iK−10f1 . . . fk}

(3.1.8)

3.1. LOOP INVARIANTS IN COMMUNICATIONS 91

and the ideal outputs are

y
(1)
k = (g0fk ⊕ . . .⊕ gk−1f1)⊕ 1 · gk ⊕ (gk+1iK−1 ⊕ . . .⊕ gK−1ik+2)

y
(0)
k = (g0fk ⊕ . . .⊕ gk−1f1)⊕ 0 · gk ⊕ (gk+1iK−1 ⊕ . . .⊕ gK−1ik+2)

(3.1.9)

Therefore

y
(1)
k ⊕ y

(0)
k = gk (3.1.10)

Hence

y
(1)
k =





y
(0)
k if gk = 0

y
(0)
k if gk = 1

(3.1.11)

Define the sums and differences of branch metrics along a loop as

b
(+)
k = b

(1)
k + b

(0)
k = (y

(1)
k + y

(0)
k)rk

b
(−)
k = b

(1)
k − b

(0)
k = (y

(1)
k − y

(0)
k)rk

(3.1.12)

Then

b
(+)
k =





2y
(0)
k rk if gk = 0

rk if gk = 1

b
(−)
k =





0 if gk = 0

(−1)y
(0)
k rk if gk = 1

(3.1.13)

Note that the actual branch metric sum and difference between the two sides

92 CHAPTER 3. HIGH THROUGHPUT VITERBI DECODERS

of a loop is given by

B(1) + B(0) =
K−1∑

k=0

b
(+)
k

B(1) −B(0) =
K−1∑

k=0

b
(−)
k

(3.1.14)

Therefore the total number of distinct branch metric sums (B(1) + B(0)) and

differences (B(1)−B(0)), which we will denote N (+) and N (−) respectfully, is

equal to the number of distinct vectors b(+) and b(−), where

b(+) =
{

b
(+)
0 , . . . , b

(+)
K−1

}

b(−) =
{

b
(−)
0 , . . . , b

(−)
K−1

} (3.1.15)

Since when gk = 1 the corresponding branch metric sum is exactly the re-

ceived signal rk (which fixed within a time slice), distinctions between vectors

b(+) only occur when gk = 0, and in this case b
(+)
k still only takes one of two

possible values 0 or 2rk depending on the binary value y
(0)
k .

Similarly since when gk = 0 the corresponding branch metric difference is

zero, distinctions between vectors b(−) only occur when gk = 1, and in this

case b
(−)
k still only takes one of two possible values ±rk depending on the

binary value y
(0)
k .

Therefore from the explanation above and (3.1.13) it is clear that

N (+) ≤ 2K−Ham(g)

N (−) ≤ 2Ham(g)

(3.1.16)

3.1. LOOP INVARIANTS IN COMMUNICATIONS 93

Example 3.1.1. Suppose g0 = 1 and gi = 0 for i > 0. Then

y(1) = {1, f1, f2, . . . , fK−1}

y(0) = {0, f1, f2, . . . , fK−1}
(3.1.17)

b(+) = {1, f1, f2, . . . , fK−1}

b(−) = {1, 0, 0, . . . , 0}
(3.1.18)

Therefore there are 2K−1 distinct b(+) and a single b(−).

N (+) = 2K−1

N (−) = 1 < 2

(3.1.19)

where 2 is the upper bound for N (−) given by (3.1.16).

Example 3.1.2. Suppose gi = 1 for all i. Then

y(1) = {1⊕ iK−1 ⊕ iK−2 ⊕ . . .⊕ i1, f1 ⊕ 1⊕ iK−1 ⊕ iK−2 ⊕ . . .⊕ i2,

f2 ⊕ f1 ⊕ 1⊕ iK−1 ⊕ iK−2 ⊕ . . .⊕ i3, . . . , fK−1 ⊕ fK−2 ⊕ . . .⊕ f1 ⊕ 1}

y(0) = {iK−1 ⊕ iK−2 ⊕ . . .⊕ i1, f1 ⊕ iK−1 ⊕ iK−2 ⊕ . . .⊕ i2,

f2 ⊕ f1 ⊕ iK−1 ⊕ iK−2 ⊕ . . .⊕ i3, . . . , fK−1 ⊕ fK−2 ⊕ . . .⊕ f1}
(3.1.20)

b(+) = {1, 1, . . . , 1}

b(−) =
{

(−1)y
(0)
0 , (−1)y

(0)
1 , . . . , (−1)y

(0)
K−1

} (3.1.21)

94 CHAPTER 3. HIGH THROUGHPUT VITERBI DECODERS

For example when K = 3,

y(1) = {1⊕ i2 ⊕ i1, 1⊕ f1 ⊕ i2, 1⊕ f2 ⊕ f1}

y(0) = {i2 ⊕ i1, f1 ⊕ i2, f2 ⊕ f1}
(3.1.22)

b(+) = {1, 1, 1}

b(−) =
{
(−1)i2⊕i1 , (−1)f1⊕i2 , (−1)f2⊕f1

} (3.1.23)

Therefore there are 2K distinct b(−) and a single b(+).

N (+) = 1

N (−) = 2K

(3.1.24)

which are exactly the upper bounds given by (3.1.16).

Now consider a rate 1
N

code with generator matrix

G =




g
0

g
1

...

g
N−1




=




g0,0 g0,1 . . . g0,K−1

g1,0 g1,1 . . . g1,K−1

...
...

. . .
...

gN−1,0 gN−1,1 . . . gN−1,K−1




(3.1.25)

which is used to generate N separate convolutional encodings of the original

data

yn,k = gn,0xk ⊕ gn,1xk−1 ⊕ . . .⊕ gn,K−1xk−K+1 (3.1.26)

3.1. LOOP INVARIANTS IN COMMUNICATIONS 95

for n = 0, . . . , N − 1, then the branch metric, bk, is given by

bk =
N−1∑
n=0

bn,k =
N−1∑
n=0

rn,kyn,k (3.1.27)

Hence the branch metrics along the top and bottom of loops can be expressed

as

B(1) =
K−1∑

k=0

b
(1)
k =

K−1∑

k=0

N−1∑
n=0

rn,ky
(1)
n,k

B(0) =
K−1∑

k=0

b
(0)
k =

K−1∑

k=0

N−1∑
n=0

rn,ky
(0)
n,k

(3.1.28)

Therefore we can calculate the branch metric sums and differences corre-

sponding to each vector of G independently, then sum the results.

Let N
(+)
n be the number of distinct branch metric sums corresponding to

vector g
n

and let N
(−)
n be the number of distinct branch metric differences

corresponding to vector g
n
. Then the total number of distinct branch metric

sums and differences for the matrix G is given by

N (+) =
N−1∏
n=0

N (+)
n

N (−) =
N−1∏
n=0

N (−)
n

(3.1.29)

Using (3.1.16), we can bound N (+) and N (−) as

N (+) ≤ 2NK−Ham(G)

N (−) ≤ 2Ham(G)

(3.1.30)

To compute the maximum of the branch metrics along a loop, we need to sum

96 CHAPTER 3. HIGH THROUGHPUT VITERBI DECODERS

the branch metric sums and differences. There are a maximum of N (+) ·N (−)

distinct maximum branch metrics along a loop, however if the total number of

loops, 22K−2, is less than this, then we only need compute 22K−2 combinations

of branch metric sums and differences. Therefore the number of additions

required to compute the maximum of the branch metrics along a loop from

the branch metric sums and differences is given by

CM = min(22K−2, N (+) ·N (−)) (3.1.31)

Note that for rate-1 codes, N (+) ·N (−) is bounded by

N (+) ·N (−) ≤ 2K−Ham(G)2Ham(G) = 2K (3.1.32)

Therefore

CM ≤ 2K (3.1.33)

When N > 1 for rate- 1
N

codes, N (+) ·N (−) is bounded by

N (+) ·N (−) ≤ 2NK−Ham(G)2Ham(G) = 2NK (3.1.34)

Therefore

CM ≤ min(22K−2, 2NK) = 22K−2 (3.1.35)

for K > 1.

Example 3.1.3. Consider a rate 1
2

code with generator matrix, G, made out

3.1. LOOP INVARIANTS IN COMMUNICATIONS 97

of vectors g
0

and g
1

from the previous two examples.

G =




1 0 . . . 0

1 1 . . . 1


 (3.1.36)

We previously calculated that there are 2K−1 distinct b
(+)
0 , a single b

(−)
0 , 2K

distinct b
(−)
1 and a single b

(+)
1 .

N
(+)
0 = 2K−1

N
(−)
0 = 1

N
(+)
1 = 1

N
(−)
1 = 2K

(3.1.37)

Therefore there are 2K−1 distinct b(+) and 2K distinct b(−).

N (+) = 2K−1

N (−) = 2K < 2K+1

(3.1.38)

where 2K+1 is the upper bound for N (−) given by (3.1.30).

Example 3.1.4. Suppose K = 3 and the generator matrix is given by

G =




1 1 1

1 1 0


 (3.1.39)

98 CHAPTER 3. HIGH THROUGHPUT VITERBI DECODERS

Then

y(1)

0
= {1⊕ i2 ⊕ i1, f1 ⊕ 1⊕ i2, f2 ⊕ f1 ⊕ 1}

y(0)

0
= {i2 ⊕ i1, f1 ⊕ i2, f2 ⊕ f1}

y(1)

1
= {1⊕ i2, f1 ⊕ 1, f2 ⊕ f1}

y(0)

1
= {i2, f1, f2 ⊕ f1}

(3.1.40)

b
(+)
0 = {1, 1, 1}

b
(−)
0 =

{
(−1)i2⊕i1 , (−1)f1⊕i2 , (−1)f1⊕f2

}

b
(+)
1 = {1, 1, 2(f2 ⊕ f1)}

b
(−)
1 =

{
(−1)i2 , (−1)f1 , 0

}

(3.1.41)

Note that fixing b
(−)
1 , i.e. fixing i2 and f1, we are left with only 4 possible

choices from the original 8 for b
(−)
0 . Therefore there are 2 distinct b(+) and

16 distinct b(−).

N (+) = 2

N (−) = 16 < 32

(3.1.42)

where 32 is the upper bound for N (−) given by (3.1.30).

Example 3.1.5. Suppose K = 3 and the generator matrix is given by

G =




1 1 1

1 0 0


 (3.1.43)

b
(+)
0 and b

(−)
0 are the same as the previous example. Also

y(1)

1
= {1, f1, f2}

y(0)

1
= {0, f1, f2}

(3.1.44)

3.1. LOOP INVARIANTS IN COMMUNICATIONS 99

b
(+)
1 = {1, 2f1, 2f2}

b
(−)
1 = {1, 0, 0}

(3.1.45)

Therefore there are 4 distinct b(+) and also 4 distinct b(−).

N (+) = 4

N (−) = 4 < 16

(3.1.46)

where 16 is the upper bound for N (−) given by (3.1.30).

In (2.5.9) we gave a bound for the number of operations required per K-T

time step to calculate the branch metrics and eliminate the loops. We now

consider the operation count when using loop invariants. From (3.1.6), in

order to eliminate the loops, we must calculate the following for each loop

max(B(1), B(0)) =
1

2
(B(1) + B(0)) +

1

2

∣∣B(1) −B(0)
∣∣ (3.1.47)

In order to calculate the above, we compute all distinct branch metric sums

and absolute differences, then sum combinations of these to calculate the

maximum branch metric along a loop. We shall refer to the operation count

for each of the above as CS, CD and CM respectfully. In (3.1.33) and (3.1.35),

we bounded CM as

CM ≤





2K for N = 1

22K−2 for N > 1

(3.1.48)

Next we consider how many additions, CS, are required to calculate all the

100 CHAPTER 3. HIGH THROUGHPUT VITERBI DECODERS

distinct branch metric sums, b(+). Recall from (3.1.13) that

b
(+)
n,k =





2y
(0)
n,krn,k if gn,k = 0

rn,k if gn,k = 1

(3.1.49)

Each distinct b(+) contains the following invariant sum

∑

n,k|gn,k=1

b
(+)
n,k =

∑

n,k|gn,k=1

rn,k (3.1.50)

which requires CSI = Ham(G)− 1 additions to compute.

Each distinct b(+) also contains the following varying sum

∑

n,k|gn,k=0

b
(+)
n,k =

∑

n,k|gn,k=0





0 if y
(0)
n,k = 0

2rn,k if y
(0)
n,k = 1

(3.1.51)

in which there are NK − Ham(G) terms in the summation. For simplicity,

suppose that T = NK − Ham(G) is a power of 2, then we can form all

possible summations using a binary tree sharing all intermediate nodes in a

similar manner to (2.5.6). This requires CSV additions

CSV = T

log2 T∑
i=1

(22i−1 − 1)2

2i
(3.1.52)

Reapplying the upper bound determined in (2.5.8), we can bound CSV as

3.1. LOOP INVARIANTS IN COMMUNICATIONS 101

follows

CSV ≤ T

log2 T∑
i=1

22i

2i

≤ 2T +

(
log2

T

2

)
2

T
2

+1

(3.1.53)

To combine the invariant and varying sums requires a further 2NK−Ham(G)

additions (one for each varying sum). Therefore the total addition count for

calculating all the possible distinct branch metric sums is

CS ≤ (NK −H)

log2 (NK−H)∑
i=1

(22i−1 − 1)2

2i
+ 2NK−H + H − 1

≤ 2NK−H+1 +

(
log2

NK −H

2

)
2

NK−H
2

+1 + H − 1

(3.1.54)

where H = Ham(G).

Next we consider how many additions, CD, are required to calculate all the

distinct branch metric absolute differences,
∣∣∣b(−)

∣∣∣. Recall from (3.1.13) that

b
(+)
n,k =





0 if gk = 0

(−1)y
(0)
n,krn,k if gk = 1

(3.1.55)

Therefore each distinct b(−) is generated by the following varying sum

∑

n,k|gn,k=1

b
(−)
n,k =

∑

n,k|gn,k=1





rn,k if y
(0)
n,k = 0

−rn,k if y
(0)
n,k = 1

(3.1.56)

in which there are Ham(G) terms in the summation.

102 CHAPTER 3. HIGH THROUGHPUT VITERBI DECODERS

Note that for every positive sum we compute, we also compute the negative

sum which corresponds to the opposite ideal outputs. Therefore we fix a

single y
(0)
n,k and half the number of distinct summations we need to compute,

leaving 2Ham(G)−1 distinct summations. Since we actually need
∣∣∣b(−)

∣∣∣, taking

the absolute value of each of the 2Ham(G)−1 distinct summations will give all

the distinct absolute differences. The number of absolute values required is

therefore

CDA = 2Ham(G)−1 (3.1.57)

For simplicity, suppose that T = Ham(G) − 1 is one greater than a power

of 2. The using the symmetry above, we can form all possible summations

using a binary tree sharing all intermediate nodes in a similar manner to

(2.5.6). This requires CDV additions

CDV = T

log2 T∑
i=1

22i

2i
(3.1.58)

Reapplying the upper bound determined in (2.5.8), we can bound CDV as

follows

CDV = T

log2 T∑
i=1

22i

2i

≤ 2T +

(
log2

T

2

)
2

T
2

+1

(3.1.59)

Therefore the total addition count for calculating all the possible distinct

3.2. COMMUNICATIONS EXAMPLE 103

branch metric absolute differences is

CD ≤ (H − 1)

log2 (H−1)∑
i=1

(22i−1 − 1)2

2i
+ 2H−1

≤ 2H +

(
log2

H − 1

2

)
2

H−1
2

+1

(3.1.60)

where H = Ham(G).

Therefore the total number of additions required to compute the maximum

of all the branch metrics between the sides of loops is bounded by

C = CS + CD + CM

≤ 22K−2 + 2NK−H+1 + 2H +

(
log2

NK −H

2

)
2

NK−H
2

+1

+

(
log2

H − 1

2

)
2

H−1
2

+1 + H − 1

(3.1.61)

3.2 Communications Example

Consider the K = 7 rate 1
2

convolutional code octal (171,133)

y
(0)
k = xk ⊕ xk−1 ⊕ xk−2 ⊕ xk−3 ⊕ xk−6

y
(1)
k = xk ⊕ xk−2 ⊕ xk−3 ⊕ xk−5 ⊕ xk−6

(3.2.1)

The generator matrix for this code is given by

G =




1 0 0 1 1 1 1

1 0 1 1 0 1 1


 (3.2.2)

104 CHAPTER 3. HIGH THROUGHPUT VITERBI DECODERS

According to (2.5.9) the number of operations per K-T time step to calculate

the branch metrics and eliminate the loops is bounded by

13908 ≤ CB + CL ≤ 14905 (3.2.3)

According to (3.1.61) the number of operations per K-T time step to elimi-

nate the loops using loop invariants is bounded by

C ≤ 5258 (3.2.4)

Therefore the use of invariants in the branch metric unit allows a significant

reduction in complexity.

Chapter 4

Magnetic Channel

4.1 Read Channel Noise Model

We can model the magnetic channel as a sampled read-back of a superposition

of isolated transitions [24].

rl =
∑

k

ykh(lT − kT + jk, w + wk) + nl (4.1.1)

where yk ∈ {−1, 0, +1} is the transition sequence defined by

yk = xk − xk−1 (4.1.2)

where xk ∈ {0, 1} is the original sequence.

h(t, w) is the magnetic head response to an isolated transition, and jk, wk

and nl are independent random variables with standard deviations σj, σw

105

106 CHAPTER 4. MAGNETIC CHANNEL

and σwn respectively.

The random variable jk is referred to as position jitter [25, 26] as it changes

the position in time of the isolated transition, wk is referred to as pulse jitter

as it changes the width of the isolated transition [25,27,28], and nl is referred

to as electronics noise [29].

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

Figure 4.1: Isolated transition, isolated transition with position jitter and
isolated transition with phase jitter, T50 = 1.4.

4.2. DETERMINING MODEL PARAMETERS 107

These random variables reflect the changing magnetic properties of the disk

and the fluctuations in the field gradient of the writing head, that result in

changes to the shape of each isolated transition [30].

Experimentally we can determine the shape of an isolated transition, h(t, w),

the pulse width of an isolated transition, w, the strength of the noise relative

to the clean signal (signal to noise ratio), SNR, and the relative strengths

of each noise component (electronics, position jitter and pulse jitter), which

we denote α and λ as defined in (4.2.3) and (4.2.4).

From these experimental parameters, we can determine the distribution and

standard deviation of jk, wk and nl, which completely define the noise model.

4.2 Determining model parameters

Given the noise model from (4.1.1), we need to determine the model param-

eters from experimental data such as the energy of the transition response

h(t, w) [31].

Let us define ES to be the total energy of the clean signal, EE the total energy

of the electronics noise and EM to be the total energy of the media noise,

where media noise consists of the position jitter and phase jitter components

with total energies EJ and EW , such that

EM = EJ + EW (4.2.1)

The signal to noise ratio, SNR, is the strength of the total noise relative to

108 CHAPTER 4. MAGNETIC CHANNEL

the clean signal, given in decibels.

ES

EE + EM

= 10
SNR
10 (4.2.2)

Let α define the fraction of total noise energy due to media noise

α =
EM

EE + EM

(4.2.3)

and λ define the fraction of media noise due to position jitter

λ =
EJ

EM

(4.2.4)

We can then express each noise component in terms of the total noise energy

of the clean signal, ES, the signal to noise ratio, SNR, and the noise mixture

parameters, α and λ.

EE = (1− α)ES10
−SNR

10

EJ = λαES10
−SNR

10

EW = (1− λ)αES10
−SNR

10

(4.2.5)

We must now derive an expression for ES for the chosen isolated transition,

and expressions for EE, EJ and EW in terms of their corresponding variances

[32].

4.2. DETERMINING MODEL PARAMETERS 109

4.2.1 Clean signal energy and representation as linear

ISI

Consider the expression for the clean signal I using equation (4.1.1) with

noise set to zero

Il =
∑

k

ykh(lT − kT, w) (4.2.6)

We now show how the clean signal can be written in the form of a generalised

partial response target response.

First we substitute the transitions yk ∈ {−1, 0, +1} with the original sequence

xk ∈ {0, 1} using (4.1.2)

Il =
∑

k

(xk − xk−1)h(lT − kT, w) (4.2.7)

Let us assume the original sequence has only a finite number of non-zero

terms, then there exists L > 0 such that xk = 0 for |k| > L. This allows us

to rewrite (4.2.7) as a finite sum.

Il =
L∑

k=−L

xkh(lT − kT, w)−
L+1∑

k=−L+1

xk−1h(lT − kT, w)

=
L∑

k=−L

xkh(lT − kT, w)−
L∑

k=−L

xkh(lT − (k + 1)T, w)

=
L∑

k=−L

xk(h(lT − kT, w)− h(lT − (k + 1)T, w))

(4.2.8)

110 CHAPTER 4. MAGNETIC CHANNEL

Now use a change of variables k ← l − k to obtain

Il =
l+L∑

k=l−L

xl−k(h(kT, w)− h((k − 1)T, w)) (4.2.9)

For convenience, since xk = 0 for |k| > L we can rewrite (4.2.9) as an infinite

sum (of finitely many non-zero terms) to achieve our final expression for I

Il =
∑

k

xl−k(h(kT, w)− h((k − 1)T, w))

=
∑

k

gkxl−k

(4.2.10)

where

gk = h(kT,w)− h((k − 1)T, w) (4.2.11)

We can think of G = {gk} as the natural target or generalised partial response

target.

We can now check that when there is no ISI, this target agrees with intuition.

Suppose that at density w0 the sampled isolated transition is given by (i.e.

there is no ISI)

h(kT, w0) =





−1 if k < 0

0 if k = 0

+1 if k > 0

(4.2.12)

4.2. DETERMINING MODEL PARAMETERS 111

Using (4.2.11) we can compute the natural target

gk = h(kT, w0)− h((k − 1)T, w0) =





0 if k < 0

1 if k = 0

1 if k = 1

0 if k > 1

(4.2.13)

So as we expect, the generalised partial response target for densities low

enough such that there is no ISI is [1, 1].

Also, consider density w1 where N = 2.

h(kT, w1) =





−1 if k < −1

−p if k = −1

0 if k = 0

+p if k = 1

+1 if k > 1

(4.2.14)

112 CHAPTER 4. MAGNETIC CHANNEL

Using (4.2.11) we can compute the natural target

gk = h(kT, w1)− h((k − 1)T, w1) =





0 if k < −1

1− p if k = −1

p if k = 0

p if k = 1

1− p if k = 2

0 if k > 2

(4.2.15)

So at densities where N = 2 the generalised partial response target is [1 −
p, p, p, 1− p].

We can clearly see how the length of the generalised partial response target

is directly related to the integer N which increases with density.

In general for the perpendicular channel, isolated transitions have the follow-

ing property

lim
t→+∞

h(t, w) = +1

lim
t→−∞

h(t, w) = −1

(4.2.16)

4.2. DETERMINING MODEL PARAMETERS 113

For example, the following functions all satisfy the above criteria

h1(t, w) = erf

(
t

w

)

h2(t, w) = tanh

(
t

w

)

h3(t, w) = tan−1

(
t

w

)

h4(t, w) =





−1 if t ≤ −N

f(t, w) if −N < t < N

1 if t ≥ N

(4.2.17)

For perpendicular recording, tangent hyperbolic, arctangent and error func-

tions have all been used for the isolated transition shape [33].

Since the value of the isolated transition approaches a constant away from

the origin, the differences between the values of consecutive samples become

effectively zero sufficiently far from the origin.

In particular considering (4.2.16), given ε > 0, there exists N > 0 such that

|h(kT, w)− 1| < ε and |h(−kT, w) + 1| < ε for all k ≥ N .

Therefore if k > N

|gk| = |h(kT, w)− h((k − 1)T, w)|

= |(h(kT, w)− 1)− (h((k − 1)T, w)− 1)|

≤ |h(kT, w)− 1|+ |h((k − 1)T, w)− 1|

< 2ε

(4.2.18)

114 CHAPTER 4. MAGNETIC CHANNEL

and if k ≤ −N

|gk| = |h(kT, w)− h((k − 1)T,w)|

= |(h(kT,w) + 1)− (h((k − 1)T, w) + 1)|

≤ |h(kT,w) + 1|+ |h((k − 1)T, w) + 1|

< 2ε

(4.2.19)

Hence we have a generalised partial response target G = [g−N+1, . . . , gN] of

length 2N .

4.2.2 Media Noise

Having determined the strength of the clean signal, we must now determine

the relative strength of the media and electronics noise to determine the

correct noise mixture.

It should be noted that in current systems, media noise dominates electronics

noise [34].

With I given in the form (4.2.10) it is easy to compute ES the energy of the

clean signal by computing the variance of I

ES = E[I2
l]− E[Il]

2 (4.2.20)

4.2. DETERMINING MODEL PARAMETERS 115

But E[Il]
2 is very easy to compute since E[xi] = 1

2

E[Il]
2 = E

[∑

k

gkxl−k

]2

=

(∑

k

gkE[xl−k]

)2

=
1

4

(∑

k

gk

)2

=
1

4

∑

k

∑
j

gkgj

(4.2.21)

and we can compute E[I2
l] using E[x2

i] = 1
2

and E[xixj] = 1
4

for i 6= j

E[I2
l] = E




(∑

k

gkxl−k

)2



= E

[∑

k

∑
j

gkgjxl−kxl−j

]

=
∑

k

∑
j

gkgjE[xl−kxl−j]

=
1

2

∑

k

g2
k +

1

4

∑

k

∑

j 6=k

gkgj

=
1

4

∑

k

g2
k +

1

4

∑

k

∑
j

gkgj

(4.2.22)

Therefore ES is given by

ES = E[I2
l]− E[Il]

2

=
1

4

∑

k

g2
k

(4.2.23)

116 CHAPTER 4. MAGNETIC CHANNEL

So now we have an expression for ES which we can compute numerically (as

long as we choose N big enough).

ES =
1

4

∑

k

[h(kT,w)− h((k − 1)T,w)]2 (4.2.24)

Note that this can also be thought of as 1
4

of the total energy of a dibit

response

Now we know ES, we can compute EE, EJ and EW using equations (4.2.5).

All that remains is to derive equations for the variances of the random vari-

ables given the respective energies.

EE = E[n2
l] = σ2

E
(4.2.25)

Total media noise can be expressed by removing the clean signal from the

noise signal (without white noise) - with a first-order Taylor expansion it can

then be expressed as a distinct sum of contributions from position jitter and

pulse jitter.

NM =
∑

k

ykh(−kT + jk, w + wk)−
∑

k

ykh(−kT,w)

≈
∑

k

yk
∂

∂t
h(−kT,w)jk +

∑

k

yk
∂

∂w
h(−kT, w)wk

(4.2.26)

Given that derivatives of h look like a longitudinal pulse - they quickly decay

to zero either side of the peak, we don’t need to worry about boundary

conditions when computing these sums. Now we can derive expressions for

4.2. DETERMINING MODEL PARAMETERS 117

EJ and EW

EM = E




[∑

k

yk
∂

∂t
h(−kT, w)jk +

∑

k

yk
∂

∂w
h(−kT,w)wk

]2



EM = E




[∑

k

yk
∂

∂t
h(−kT, w)jk

]2

 + E




[∑

k

yk
∂

∂w
h(−kT,w)wk

]2



= EJ + EW

EJ =
∑

k

E[y2
k]E[j2

k]

(
∂

∂t
h(−kT,w)

)2

=
1

2
σ2

J

∑

k

(
∂

∂t
h(−kT, w)

)2

EW =
1

2
σ2

W

∑

k

(
∂

∂w
h(−kT, w)

)2

(4.2.27)

Computing these derivatives we find

∑

k

(
∂

∂t
h(−kT,w)

)2

= ht =
4

πw2

∑

k

e−2(kT/w)2 (4.2.28)

∑

k

(
∂

∂w
h(−kT,w)

)2

= hw =
4

πw4

∑

k

(kT)2e−2(kT/w)2 (4.2.29)

We now have a complete system of equations to compute variances of the

three noise sources

σ2
E = (1− α)ES10−SNR/10 (4.2.30)

σ2
J = 2λα

ES

ht

10−SNR/10 (4.2.31)

σ2
W = 2(1− λ)α

ES

hw

10−SNR/10 (4.2.32)

118 CHAPTER 4. MAGNETIC CHANNEL

where ht is defined in (4.2.28), hw defined in (4.2.29), ES defined in (4.2.24).

At this point we have just computed variances for the jitter random variables.

If we want the jitter random variables to be normally distributed, we can just

generate Gaussian random variables with the variances computed in (4.2.31)

and (4.2.32)

j ∼ N(0, σ2
J) w ∼ N(0, σ2

W) n ∼ N(0, σ2
E) (4.2.33)

We could also model jitter with uniform random variables. If we use a uni-

form distribution U(−a, a) whose probability density function is constant

over the interval [−a, +a] then the variance of this distribution is a2/3 and

we can generate uniformly distributed jitter random variables, along with

the Gaussian electronics noise, as follows

j ∼ U(−
√

3σJ , +
√

3σJ) w ∼ U(−
√

3σW , +
√

3σW) n ∼ N(0, σ2
E)

(4.2.34)

4.2.3 Isolated Transition - Error Function

The most common model for the isolated transition shape in perpendicular

recording is the error function [35].

erf(z) =
2√
π

∫ z

0

e−t2 dt (4.2.35)

4.2. DETERMINING MODEL PARAMETERS 119

Let h(t, w) denote the response to an isolated transition

h(t, w) = erf

(
t

w

)
(4.2.36)

We choose w such that the pulse width at the 50% point between the baseline

and the peak is t = T50 [36], as shown in figure 4.2.

T50

1.0

0.5

-0.5

-1.0

Figure 4.2: Measuring T50.

Therefore we must solve

h(T50, w) = erf

(1
2
T50

w

)
= 0.5 (4.2.37)

120 CHAPTER 4. MAGNETIC CHANNEL

which has the solution

w ≈ 1.048358 T50 (4.2.38)

Hence we can express the isolated transition in terms of T50 as

h(t, T50) ≈ erf

(
t

1.048358 T50

)
(4.2.39)

4.2.4 Isolated Transition - Hyperbolic Tangent

Another common isolated transition in perpendicular recording is hyperbolic

tangent [33].

tanh(z) =
ez − e−z

ez + e−z
=

e2z − 1

e2z + 1
(4.2.40)

Let h(t, w) denote the response to an isolated transition

h(t, w) = tanh

(
t

w

)
(4.2.41)

We choose w such that the pulse width at the 50% point between the baseline

and the peak is t = T50, as shown in figure 4.2. Therefore we must solve

h(T50, w) = tanh

(1
2
T50

w

)
= 0.5 (4.2.42)

which has the solution

w ≈ 1

ln 3
T50 (4.2.43)

4.2. DETERMINING MODEL PARAMETERS 121

Hence we can express the isolated transition in terms of T50 as

h(t, T50) ≈ tanh

(
t ln 3

T50

)
(4.2.44)

122 CHAPTER 4. MAGNETIC CHANNEL

Chapter 5

Data Dependent Detectors

The magnetic channel noise model we discussed in the previous chapter de-

scribed a channel in which noise is both correlated and data dependent [24].

rl =
∑

k

ykh(lT − kT + jk, w + wk) + nl (5.0.1)

Regular Viterbi detectors [37] are only optimal when the noise is white Gaus-

sian, since they do not take into account correlations between noise samples.

Noise prediction [38, 39] achieves improved performance by estimating the

current noise sample from the previous noise samples, then subtracting the

estimate from the actual noise sample, effectively whitening the noise by

removing the correlations.

In high density magnetic recording channels, data dependent media noise

exists [11, 40] due to changing magnetic properties of the disk and the fluc-

tuations in the field gradient [26, 41].

123

124 CHAPTER 5. DATA DEPENDENT DETECTORS

Further improvements to the performance can be achieved by considering the

data dependence of the noise [11, 42]. Data dependent detectors were first

proposed in [43,44] and later on was treated more generally in [45].

The aim of this chapter is to discuss various Viterbi detector implementations

which assume noise models that approximate the above general model, then

to minimise the Kullback-Leibler divergence [46] between the approximate

and ideal noise models to determine the noise model parameters and provide

simulation results to compare the various implementations.

The first implementation we shall consider assumes that the noise is auto-

regressive with correlation length L and data-independent, i.e. noise samples

are correlated with the previous L noise sample, but those correlations do

not depend on the original data.

5.1 Auto-Regressive Noise Viterbi Detector

Theorem 5.1.1. Suppose a binary sequence x ∈ {0, 1}N which is encoded

with a non-recursive convolutional code describing inter-symbol interference

(ISI) with impulse response {g0, . . . , gI},

yi =
I∑

k=0

gkxi−k (5.1.1)

is transmitted over an auto-regressive Gaussian noise channel,

ri = yi + ni (5.1.2)

5.1. AUTO-REGRESSIVE NOISE VITERBI DETECTOR 125

where

ni = σωi +
L∑

l=1

blni−l (5.1.3)

and where ωi ∼ N(0, 1). Then given the received sequence r ∈ RN , the orig-

inal unencoded sequence x̂ ∈ {0, 1}N transmitted with maximum likelihood

is given by

x̂ = argmin
x∈{0,1}N

{
N−1∑
i=0

BMi(n)

}
(5.1.4)

where the branch metric BMi(n) is given by

BMi(n) =

(
ni −

L∑

l=1

blni−l

)2

(5.1.5)

Proof. Since ωi ∼ N(0, 1) are independent variables, we have the following

expression for the conditional probability of a given noise sequence

Pr(r | x) =
N−1∏
i=0

√
1

2πσ2
exp


− 1

2σ2

(
ni −

L∑

l=1

blni−l

)2

 (5.1.6)

From (1.2.5), in order to find the maximally likely sequence, we need to

determine

x̂ = argmax
x∈{0,1}N

{Pr(r | x)}

= argmin
x∈{0,1}N

{−2 ln Pr(r | x)}

= argmin
x∈{0,1}N



−2 ln





N−1∏
i=0

√
1

2πσ2
exp


− 1

2σ2

(
ni −

L∑

l=1

blni−l

)2











(5.1.7)

126 CHAPTER 5. DATA DEPENDENT DETECTORS

Simplifying the logarithms and exponentials gives

x̂ = argmin
x∈{0,1}N





N−1∑
i=0

ln 2πσ2 +
1

σ2

(
ni −

L∑

l=1

blni−l

)2


 (5.1.8)

which is equivalent to

x̂ = argmin
x∈{0,1}N





N−1∑
i=0

(
ni −

L∑

l=1

blni−l

)2


 (5.1.9)

since the terms in σ are common to all paths and therefore don’t effect the

argument of the minimisation.

5.1.1 Computation of Noise Parameters

Suppose the noise source is unknown and has probability density function

P (ni). We need to choose parameters b such that (5.1.3) matches the un-

known noise model P (ni) as closely as possible. Therefore we need to choose

b such that DKL(P | P (0)) is minimal, where P (0) is given by (5.1.6).

By definition

DKL(P | P (0)) =

∫
P (n) ln

P (n)

P (0)(n)

N∏

k=1

dnk

=

∫
P (n) ln P (n)

N∏

k=1

dnk −
∫

P (n) ln P (0)(n)
N∏

k=1

dnk

(5.1.10)

5.1. AUTO-REGRESSIVE NOISE VITERBI DETECTOR 127

We obtain optimality when

∂

∂b
DKL(P | P (0)) = 0 (5.1.11)

We can express P (0) as

P (0) = e−
QN

k=1 BMk (5.1.12)

Therefore

∂

∂b
DKL(P | P (0)) =

N∑

k=1

∂

∂b

∫
P (n) ln P (0)(n)

N∏

k=1

dnk

= −
N∑

k=1

∂

∂b

∫
P (n)BMk(n)

N∏

l=1

dnl

= −
N∑

k=1

∂

∂b
EP [BMk(n)]

= −N
∂

∂b
EP [BMk(n)]

(5.1.13)

Hence finding b is equivalent to E-branch metric minimisation.

From (5.1.5) we see the branch metric is given by

BMk(n) =

(
nk −

L∑

l=1

blnk−l

)2

(5.1.14)

Setting the partial derivatives to zero shows that for m = 1, . . . , L

0 = −1

2

∂

∂bm

EP [BMk(n)] = EP

[
nk−m

(
nk −

L∑

l=1

blnk−l

)]

= EP [nk−mnk]−
L∑

l=1

blEP [nk−mnk−l]

(5.1.15)

128 CHAPTER 5. DATA DEPENDENT DETECTORS

Hence

b = C−1v (5.1.16)

where C is the correlation matrix 1

C =




EP [n2
k−1] EP [nk−1nk−2] . . . EP [nk−1nk−L]

EP [nk−2nk−1] EP [n2
k−2] . . . EP [nk−2nk−L]

...
...

. . .
...

EP [nk−Lnk−1] EP [nk−Lnk−2] . . . EP [n2
k−L]




(5.1.17)

and v is the vector

v =




EP [nknk−1]

EP [nknk−2]

...

EP [nknk−L]




(5.1.18)

5.1.2 Simulation Results

The following plot shows the relative performance of a data independent

auto-regressive detector compared to a white noise detector.

The choice of target for the white noise detector was determined using the

minimum mean squared error (MMSE) criteria, whilst the target for the

auto-regressive detector was chosen as the best performing target obtained

from a target search.

1The proper calculation of C−1 should be based on the singular value decomposition
(SVD) and generalised inverse.

5.1. AUTO-REGRESSIVE NOISE VITERBI DETECTOR 129

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16 17 18

B
E
R

SNR (dB)

T50=1.4 WN=10% PosJ=81% PhaJ=9% Channel : 100000 sectors

4 State White Noise MMSE Detector BER

32 State AR [1 3 3] L=3 D=0 Detector BER

Figure 5.1: Comparison of white noise MMSE detector and data independent
auto-regressive detector.

5.1.3 Limitations

The branch metric for the data independent auto-regressive detector is given

by

BMi =

(
ni −

L∑

l=1

blni−l

)2

(5.1.19)

where

nj = rj − yj = rj −
I∑

k=0

gkxj−k (5.1.20)

Hence nj depends on {xj−I , . . . , xj} and BMi depends on {ni−L, . . . , ni}.
Therefore BMi depends on {xi−I−L, . . . , xi}.

130 CHAPTER 5. DATA DEPENDENT DETECTORS

The Viterbi detector therefore requires 2I+L states in order to keep track of

the I + L previous terms from the original sequence.

Note that this is 2L times more states than the equivalent white noise Viterbi

detector. Hence the size of the auto-regressive detector increases exponen-

tially with the correlation length L.

Also figure 5.1 shows that the performance gain relative to the 2I state white

noise detector is minimal.

5.1.4 Equivalence To White Noise Detector

Note that figure 5.1 suggests that data independent auto-regressive detectors

perform comparably to white noise detectors when optimal targets are chosen

for both detectors.

To understand this, let us rearrange the branch metric from (5.1.19)

BMi =

(
ni −

L∑

l=1

blni−l

)2

=

(
(ri − yi)−

L∑

l=1

bl(ri−l − yi−l)

)2

=

((
ri −

L∑

l=1

blri−l

)
−

(
yi −

L∑

l=1

blyi−l

))2

= (Ri − Yi)
2

(5.1.21)

5.2. DATA DEPENDENT AUTO-REGRESSIVE NOISE VITERBI DETECTOR131

where

Ri = ri −
L∑

l=1

blri−l = r ∗ {1,−b}

Yi = yi −
L∑

l=1

blyi−l = y ∗ {1,−b} = x ∗ (g ∗ {1,−b})
(5.1.22)

Therefore data independent auto-regressive detectors with target length I+1

and correlation length L are equivalent to white noise detectors with target

length I +L+1 where the target is determined by the convolution g∗{1,−b}
and the received signal is additionally equalised by applying a finite impulse

response filter with tap coefficients {1,−b}.

5.2 Data Dependent Auto-Regressive Noise

Viterbi Detector

A refinement to the auto-regressive model is to assume that in addition being

conditionally Gaussian and Markov, the noise correlations depend on the

original data [11].

Let xi
0 = {x0, x1, . . . , xi} represent a sub-sequence of the original data se-

quence. Note that we assume elements of the original data sequence are

independent identically distributed random variables taking values 0 and 1,

with probability 1
2
.

132 CHAPTER 5. DATA DEPENDENT DETECTORS

We define the sequence of noise signals {n0, n1, . . . ni} to be

ni = µ(xi
i−D) + σ(xi

i−D)ωi +
L∑

k=1

bk(x
i
i−D)ni−k (5.2.1)

where xi
i−D is the data pattern and ωi ∼ N(0, 1) are independent identically

distributed standard Gaussian random variables.

Theorem 5.2.1. Suppose a binary sequence x ∈ {0, 1}N which is encoded

with a non-recursive convolutional code describing inter-symbol interference

(ISI) with impulse response {g0, . . . , gI},

yi =
I∑

k=0

gkxi−k (5.2.2)

is transmitted over an auto-regressive Gaussian noise channel,

ri = yi + ni (5.2.3)

where ni is defined by (5.2.1) and where ωi ∼ N(0, 1). Then given the

received sequence r ∈ RN , the original unencoded sequence x̂ ∈ {0, 1}N

transmitted with maximum likelihood is given by

x̂ = argmin
x∈{0,1}N

{
N−1∑
i=0

BMi(x
i
i−D, ni

i−L)

}
(5.2.4)

where the branch metric BMi(x
i
i−D, ni

i−L) is given by

BMi(xi
i−D, ni

i−L) = ln(σ(xi
i−D)) +

1
σ2(xi

i−D)

(
ni −

L∑

l=1

bl(xi
i−D)ni−l − µ(xi

i−D)

)2

(5.2.5)

5.2. DATA DEPENDENT AUTO-REGRESSIVE NOISE VITERBI DETECTOR133

Proof. Using the fact that ωi are independent normal variables, the condi-

tional probability of a given noise sequence is given by

P (nN
0 | xN

0) =
N∏

i=0

√
1

2πσ2(xi
i−D)

e
− 1

2σ2(xi
i−D

)
(ni−

PL
k=1 bk(xi

i−D)ni−k−µ(xi
i−D))

2

,

(5.2.6)

where we assumed that nk = 0, xk = 0 for k < 0, see [11].

Taking the natural logarithm of (5.2.6) one finds that

−2 ln
(
P (ni

0 | xi
0)

)
=

i∑

k=0

BM(xi
i−D, ni

i−L), (5.2.7)

where

BM(xi
i−D, ni

i−L) = 2 ln(σ(xi
i−D)) +

1
σ2(xi

i−D)

(
ni −

L∑

k=1

bk(xi
i−D)ni−k − µ(xi

i−D)

)2

(5.2.8)

is the branch metric of maximum likelihood detector matched to data depen-

dent auto-regressive noise (5.2.1) with Markov length L and data dependent

length M .

5.2.1 Computation of Noise Parameters

Suppose the noise source is unknown and has probability density function

P (ni). We need to choose parameters σ, b, µ such that (5.2.1) matches the

unknown noise model P (ni) as closely as possible. Therefore we need to

choose σ, b, µ such that

DKL(P | P (0)) (5.2.9)

134 CHAPTER 5. DATA DEPENDENT DETECTORS

is minimal, where P (0) is given by (5.2.6).

By definition

DKL(P | P (0)) =

∫
P (n) ln

P (n)

P (0)(n)

N∏

k=1

dnk

=

∫
P (n) ln P (n)

N∏

k=1

dnk −
∫

P (n) ln P (0)(n)
N∏

k=1

dnk

(5.2.10)

We obtain optimality when

∂

∂ {σ, b, µ}DKL(P | P (0)) = 0 (5.2.11)

We can express P (0) as

P (0) = e−
QN

k=1 BMk (5.2.12)

Therefore

∂

∂ {σ, b, µ}DKL(P | P (0)) =
N∑

k=1

∂

∂ {σ, b, µ}
∫

P (n) ln P (0)(n)
N∏

k=1

dnk

= −
N∑

k=1

∂

∂ {σ, b, µ}
∫

P (n)BMk(n)
N∏

l=1

dnl

= −
N∑

k=1

∂

∂ {σ, b, µ}EP [BMk(n)]

= −N
∂

∂ {σ, b, µ}EP [BMk(n)]

(5.2.13)

Hence finding σ, b, µ is equivalent to E-branch metric minimisation.

5.2. DATA DEPENDENT AUTO-REGRESSIVE NOISE VITERBI DETECTOR135

From (5.2.8) we see the branch metric is given by

BMk(n, p) = 2 ln(σ(p)) +
1

σ2(p)

(
nk −

L∑

l=1

bl(p)nk−l − µ(p)

)2

(5.2.14)

Hence the expected value of the branch metric is given by

EP [BMk(n)] =
1

2D+1

2D+1−1∑
p=0

EP [BMk(n, p) | pk = p] (5.2.15)

Therefore when we differentiate we find that

∂

∂ {bm, σ, µ} (p)
EP [BMk(n)] =

1

2D+1

∂

∂ {bm, σ, µ} (p)
EP [BMk(n, p) | pk = p]

(5.2.16)

This allows us to calculate bm(p), σ(p), µ(p) for each pattern p independently.

Setting the partial derivative w.r.t. the data dependent mean to zero gives

0 = −2D ∂

∂µ(p)
EP [BMk(n)]

= EP

[
1

σ2(p)

(
nk −

L∑

l=1

bl(p)nk−l − µ(p)

)
| pk = p

]

=
1

σ2(p)

(
EP [nk | pk = p]−

L∑

l=1

bl(p)EP [nk−l | pk = p]− µ(p)

)
(5.2.17)

Hence

µ(p) = EP [nk | pk = p]−
L∑

l=1

bl(p)EP [nk−l | pk = p] (5.2.18)

Then setting the partial derivatives w.r.t. bm(p) to zero shows that for m =

136 CHAPTER 5. DATA DEPENDENT DETECTORS

1, . . . , L

0 = −2D ∂

∂bm(p)
EP [BMk(n)]

= EP

[
1

σ2(p)
nk−m

(
nk −

L∑

l=1

bl(p)nk−l − µ(p)

)
| pk = p

]

=
1

σ2(p)

(
EP [nk−mnk | pk = p]

−
L∑

l=1

bl(p)EP [nk−mnk−l | pk = p]− µ(p)EP [nk−m | pk = p]

)

=
1

σ2(p)

(
EP [nk−mnk | pk = p]−

L∑

l=1

bl(p)EP [nk−mnk−l | pk = p]

−
(
EP [nk | pk = p]−

L∑

l=1

bl(p)EP [nk−l | pk = p]

)
EP [nk−m | pk = p]

)

=
1

σ2(p)

(
(EP [nk−mnk | pk = p]− EP [nk | pk = p]EP [nk−m | pk = p])

−
L∑

l=1

bl(p) (EP [nk−mnk−l | pk = p]− EP [nk−l | pk = p]EP [nk−m | pk = p])

)

=
1

σ2(p)

(
EP [ηk−mηk | pk = p]−

L∑

l=1

bl(p)EP [ηk−mηk−l | pk = p]

)

(5.2.19)

where

ηi = ni − EP [ni] (5.2.20)

Hence

b(p) = C(p)−1v(p) (5.2.21)

5.2. DATA DEPENDENT AUTO-REGRESSIVE NOISE VITERBI DETECTOR137

where C(p) is the data dependent correlation matrix

C(p) =




EP [η2
k−1 | pk = p] EP [ηk−1ηk−2 | pk = p] . . . EP [ηk−1ηk−L | pk = p]

EP [ηk−2ηk−1 | pk = p] EP [η2
k−2 | pk = p] . . . EP [ηk−2ηk−L | pk = p]

...
...

. . .
...

EP [ηk−Lηk−1 | pk = p] EP [ηk−Lηk−2 | pk = p] . . . EP [η2
k−L | pk = p]




(5.2.22)

and v(p) is the data dependent vector

v(p) =




EP [ηkηk−1 | pk = p]

EP [ηkηk−2 | pk = p]

...

EP [ηkηk−L | pk = p]




(5.2.23)

Finally set the partial derivative w.r.t. σ(p) to zero

0 = 2D ∂

∂σ(p)
EP [BMk(n)]

=
1

σ(p)
− 1

σ3(p)
EP




(
nk −

L∑

l=1

bl(p)nk−l − µ(p)

)2

| pk = p




(5.2.24)

138 CHAPTER 5. DATA DEPENDENT DETECTORS

Hence

σ(p)2 = EP

[(
nk −

L∑

l=1

bl(p)nk−l − µ(p)

)2

| pk = p

]

= EP

[(
nk −

L∑

l=1

bl(p)nk−l − EP [nk | pk = p]

−
L∑

l=1

bl(p)EP [nk−l | pk = p]

)2

| pk = p

]

= EP

[(
ηk −

L∑

l=1

bl(p)ηk−l

)2

| pk = p

]

= EP

[
η2

k | pk = p
]− 2

L∑

l=1

bl(p)EP [ηkηk−l | pk = p]

+
L∑

l=1

L∑
j=1

bl(p)bj(p)EP [ηk−lηk−j | pk = p]

= EP

[
η2

k | pk = p
]− 2b(p)T v(p) + b(p)TC(p)b(p)

(5.2.25)

Then using (5.2.21), we can eliminate b(p) to give

σ(p)2 = EP

[
η2

k | pk = p
]− 2(C(p)−1v(p))T v(p) + (C(p)−1v(p))TC(p)C(p)−1v(p)

= EP

[
η2

k | pk = p
]− 2v(p)T (C(p)−1)T v(p) + v(p)T (C(p)−1)T v(p)

= EP

[
η2

k | pk = p
]− v(p)T (C(p)−1)T v(p)

= EP

[
η2

k | pk = p
]− v(p)TC(p)−1v(p)

(5.2.26)

since the correlation matrix C(p) is symmetric.

5.2. DATA DEPENDENT AUTO-REGRESSIVE NOISE VITERBI DETECTOR139

5.2.2 Simulation Results

The following plot shows the relative performance of a data dependent auto-

regressive detector compared to a data independent auto-regressive detector

and a white noise detector.

The choice of target for the white noise detector was determined using the

minimum mean squared error (MMSE) criteria, whilst the target for the

auto-regressive detectors was chosen as the best performing target obtained

from a target search.

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16 17 18

B
E
R

SNR (dB)

T50=1.4 WN=10% PosJ=81% PhaJ=9% Channel : 100000 sectors

4 State White Noise MMSE Detector BER

32 State AR [1 3 3] L=3 D=0 Detector BER

256 State AR [1 3 3] L=3 D=5 Detector BER

Figure 5.2: Comparison of white noise MMSE detector, data independent
auto-regressive detector and data dependent auto-regressive detector.

140 CHAPTER 5. DATA DEPENDENT DETECTORS

5.2.3 Limitations

As per the data independent auto-regressive detector, the data dependent

auto-regressive detector requires at least 2I+L states.

But in addition, one can see from (5.2.8) that the data patterns used by the

branch metric depends on bits xi
i−L−D. Therefore the detector must have at

least 2L+D states. Hence the data dependent auto-regressive detector requires

2L+max{I,D} states.

Again we have the problem that complexity increases exponentially with the

correlation length, and pattern length (if sufficiently large). Also note that

the correlation coefficients must be stored for each data pattern, and selected

between in the implementation, thereby increasing complexity further.

However, the performance gain using data dependent auto-regressive detec-

tors in compelling. Therefore a trade-off must be achieved between complex-

ity and performance.

One trivial suboptimal approach to the problem was proposed in [44]. The

idea is to approximate data dependent noise model parameters (L, D) with

data dependent noise model with parameters (L′, D′) such that L′ + D′ <

L + D.

Unfortunately, this approach does not always solve the problem of complexity

as numerical experiments show a sharp decline in performance as L+D in the

model used to describe noise signals falls below a certain threshold value. For

perpendicular channel these threshold values turn out to be L+D = 7, which

means that the corresponding data dependent detector is still impractical.

5.3. BLOCK DIAGONAL DETECTORS 141

The following plot shows the relative performance of a data dependent auto-

regressive detector with L = 3 and D = 5 compared to a simplified data

dependent auto-regressive detector with L = 2 and D = 2.

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16 17 18

B
E
R

SNR (dB)

T50=1.4 WN=10% PosJ=81% PhaJ=9% Channel : 100000 sectors

4 State White Noise MMSE Detector BER

256 State AR [1 3 3] L=3 D=5 Detector BER

16 State AR [1 3 3] L=2 D=2 Detector BER

Figure 5.3: Comparison of data dependent auto-regressive detectors with
different parameters.

5.3 Block Diagonal Detectors

In order to avoid increasing the number of states, we must ensure the branch

metric does not depend on noise estimates from before the current block.

The simplest way of achieving this is to neglect inter-block correlations in a

high radix Viterbi detector altogether. Mathematically, this corresponds to

approximating banded variance matrix of noise signal with a block-diagonal

142 CHAPTER 5. DATA DEPENDENT DETECTORS

one. If detector’s radix is sufficiently high, the relative contribution of inter-

block correlations is small compared with in-block correlations. As a result,

the performance of block diagonal detectors approach optimal in the limit of

large block sizes. Unfortunately, the rate of convergence is very slow and even

radix-64 block-diagonal detector was outperformed significantly by optimal

detectors in our numerical simulations.

This approach was originally considered by Altekar and Wolf [43].

The simplest question to ask is: what is the best approximation of the noise

statistics with block diagonal statistics? To avoid cluttered notations we will

present the derivation of the answer for a particular case of data-independent

stationary correlated Gaussian noise and just state the generalization to data

dependent case.

Let C−1 be the infinite Toeplitz variance matrix of linear correlated noise.

Let C−1
B be the B × B variance matrix of block diagonal approximation of

this variance matrix, where B is the block size. Here C is the correlation

matrix of noisy signal, CB - B × B correlation matrix corresponding to a

block of a block-diagonal approximation. The problem is to find C−1
B given

C−1.

Consider the string of noise samples n = ni
i=∞
i=−∞, where in order to avoid

ill-defined expressions we assume that only finitely many ni’s are non-zero.

The probability density of this string is

P (n) =
1

Z
e−

1
2
〈n,C−1n〉, (5.3.1)

5.3. BLOCK DIAGONAL DETECTORS 143

where Z is a normalization constant.

The probability density of the same string in block-diagonal approximation

is

PB(n) =
∞∏

i=−∞

√
1

(2π)n det(VB)
e−

1
2
〈n(i+1)·B−1

i·B ,C−1
B n

(i+1)·B−1
i·B 〉 (5.3.2)

The block diagonal distribution PB which is the closest to P in information-

theoretic sense is the one for which the relative entropy

DKL[P | PB](V, VB) ≡
∫ ∏

i

dniP (n) ln

(
P (n)

PB(n)

)
(5.3.3)

is minimal. For such a distribution,

0 =
∂

∂VB

DKL[P | PB](V, VB) = −
∫ ∏

i

dni
P

PB

∂PB

∂VB

(5.3.4)

Using (5.3.2) one can re-write the extremum condition as follows:

〈ninj〉P =
∂

∂VB ij

ln(det(C−1
B)), 1 ≤ i, j ≤ B. (5.3.5)

Here 〈. . .〉P denotes averaging with respect to probability density P . As a

consequence of Krammer’s rule, the r. h. s. of (5.3.5) is just V
−1

B ≡ CB.

The l. h. s. of (5.3.5) is the exact B × B correlation matrix of distribution

P . We therefore arrive at an intuitively pleasing result that block-diagonal

distribution which is the closest to a given distribution P is characterized by

144 CHAPTER 5. DATA DEPENDENT DETECTORS

the variance matrix

V B = C−1
B , (5.3.6)

where CB is the exact B × B correlation matrix of the distribution we are

trying to approximate. Note that Gaussianity of P didn’t play any role in

our derivation.

The generalization of (5.3.6) to data dependent case is straightforward: vari-

ance matrix conditioned on a particular data sequence within a block is

V B |x1,x2,...xB
=

(
E(ninj | x1, x2, . . . , xB)

)−1

, (5.3.7)

where the expression in the r. h. s. of (5.3.7) is correlation function

of the distribution we are approximating conditioned on the data-sequence

x1, x2, . . . , xB.

The expression for the branch metric of block-diagonal maximum likelihood

detector is obtained by taking the natural logarithm of distribution (5.3.2):

−2 ln PB(n) =
∑

i

BMi(niB, niB+1, . . . n(i+1)B−1), (5.3.8)

where

BMi(niB, niB+1, . . . n(i+1)B−1) = 〈n(i+1)·B−1
i·B ,C−1

B n
(i+1)·B−1
i·B 〉 (5.3.9)

is the weight of the path consisting of B branches belonging to the i’th block.

5.3. BLOCK DIAGONAL DETECTORS 145

5.3.1 Simulation Results

The following plot shows the relative performance of a data independent

block diagonal detector compared to a white noise detector.

The choice of target for the white noise detector was determined using the

minimum mean squared error (MMSE) criteria, whilst the target for the

block diagonal detectors was chosen as the best performing target obtained

from a target search.

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16 17 18

B
E
R

SNR (dB)

T50=1.4 WN=10% PosJ=81% PhaJ=9% Channel : 100000 sectors

4 State White Noise MMSE Detector BER
4 State Block Diagonal [50 173 100] Detector BER

256 State AR [1 3 3] L=3 D=5 Detector BER

Figure 5.4: Comparison of white noise MMSE detector and block diagonal
detector and data dependent auto-regressive detector.

146 CHAPTER 5. DATA DEPENDENT DETECTORS

5.3.2 Limitations

Block diagonal detectors only require the same 2I states as white noise de-

tectors, however the loss of performance due to neglecting the inter-block

correlations make such detectors a poor compromise.

An improved block diagonal detector with noise prediction is described in [6].

5.4 Data Dependent Noise Predictive Detec-

tor

In the auto-regressive detectors described above, any data bit referenced in

the branch metric can be determined exactly from the state and transition.

Noise predictive detectors aim to reduce the number of states by estimat-

ing previous data bits rather than determining them exactly from the state

information.

This can be achieved by performing a local traceback along the surviving

path to the current state. The local traceback is performed in exactly the

same way as the global traceback, using the survivor decisions stored from

previous time steps.

In particular fix the number of states to 2I , where I < L + D is the ISI

length. Then each branch has only the I + 1 latest data bits available, but

the branch metric requires knowledge of the latest L + D + 1 bits. Therefore

the previous L + D − I bits must be obtained by local traceback.

5.4. DATA DEPENDENT NOISE PREDICTIVE DETECTOR 147

Note that local traceback is sub-optimal since we only consider the path

specified by the local traceback, and ignore the other 2L+D−I − 1 contenders.

xN−K+1, . . . , xN−1

1, xN−K+1, . . . , xN−2

0, xN−K+1, . . . , xN−2

BM(N−1)(xN−K−1, 1, xN−K+1, . . . , xN−1)

BM(N−1)(xN−K−1, 0, xN−K+1, . . . , xN−1)

1, 1, xN−K+1, . . . , xN−3

0, 1, xN−K+1, . . . , xN−3

1, 0, xN−K+1, . . . , xN−3

0, 0, xN−K+1, . . . , xN−3

Figure 5.5: Local traceback of single data bit xN−K−1.

5.4.1 Simulation Results

The following plot shows the relative performance of a data dependent noise

predictive detector compared to a data dependent auto-regressive detector

and a white noise detector.

The choice of target for the white noise detector was determined using the

minimum mean squared error (MMSE) criteria, whilst the target for the data

dependent detectors was chosen as the best performing target obtained from

a target search.

148 CHAPTER 5. DATA DEPENDENT DETECTORS

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16 17 18

B
E
R

SNR (dB)

T50=1.4 WN=10% PosJ=81% PhaJ=9% Channel : 100000 sectors

4 State White Noise MMSE Detector BER

256 State AR [1 3 3] L=3 D=5 Detector BER

16 State AR [1 3 3] L=2 D=2 Detector BER

4 State DDNP [1 3 3] L=3 D=5 Detector BER

Figure 5.6: Comparison of white noise MMSE detector, data dependent auto-
regressive detector and data dependent noise predictive detector.

5.4.2 Limitations

DDNP detectors only require the same 2I states as white noise detectors,

and therefore solve the problem of exponentially increasing complexity with

increasing correlation length.

Unfortunately, the local traceback cannot occur until the previous decisions

at each state have been made, since the pattern depends on this decision.

This makes implementation impractically slow as this dependence results in

a long feedback loop. Feedback loops preclude the possibility of pipelining,

therefore any logic contained within the feedback loop must be implemented

5.4. DATA DEPENDENT NOISE PREDICTIVE DETECTOR 149

in a single cycle. The increased complexity of the feedback loop therefore

reduces throughput.

5.4.3 Reduced State ISI Predictive Detectors

The idea of using local traceback to compensate for insufficiently large num-

ber of states in the trellis, can be extended beyond predicting states for noise

prediction to include state information for ISI prediction using the same

technique.

In the following example, a 4-state white noise MMSE detector is outper-

formed by an 8-state white noise MMSE detector. However, the 4-state

white noise detector with a single step local traceback almost matches the

performance of the standard detector with twice the number of states.

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16 17 18

B
E
R

SNR (dB)

T50=1.4 WN=10% PosJ=81% PhaJ=9% Channel : 100000 sectors

4 State White Noise [10 10 3] Detector BER

8 State White Noise [10 10 2 -1] Detector BER

4 State ISI Predictive White Noise [10 10 2 -1] Detector BER

Figure 5.7: Comparison of 4 and 8 state white noise MMSE detectors against
a 4 state ISI predictive white noise detector.

150 CHAPTER 5. DATA DEPENDENT DETECTORS

5.5 Double Detectors

We have seen that data dependent noise predictive detectors with the same

number of states as a white noise detector, perform comparably to data

dependent auto-regressive detectors with 2L+D−I times more states.

However, data dependent noise predictive detectors contain a long feedback

path between the add compare select unit and the branch metric unit.

Traceback Unit

Estimated Original Data

Path MetricsBranch Metrics

Survivor Information

Branch Metric Unit

Add Compare Select Unit

Received Signal

DDNP Detector

Figure 5.8: DDNP detector showing long noise predictive loop between ACS
and BMU.

Therefore to make their implementation practical, the feedback path between

the add-compare-select and the local traceback must be eliminated.

The idea of the double detector is to provide an estimate of the missing data

bits without performing local traceback by using a pre-detector before the

5.5. DOUBLE DETECTORS 151

main detector [1, 4].

The pre−detector performs preliminary sequence detection using a simplified

branch metric, and feeds these decisions to the main detector, which can then

perform a more accurate detection using the more advanced branch metric.

For example, suppose that we would like to compute the branch metric of

the branch xi−4xi−3xi−2xi−1xi of the main detector. Assuming that I = 4

and L = 4, we also need to know bits xi−8xi−7xi−6xi−5 to perform this

computation. These can be obtained by a 4-step local trace-back on the

trellis of the two-state pre-detector starting from state xi−4 at time i− 4.

Traceback Unit

Estimated Original Data

Main Detector

Branch Metrics

Pre-Detector

Survivor Information

Received Signal

Path Metrics Path MetricsBranch Metrics

Survivor Information

Add Compare Select Unit

Branch Metric Unit Branch Metric Unit

Add Compare Select Unit

Figure 5.9: Double detector replaces noise predictive loop with survivor in-
formation from pre-detector.

Simulation results show that the double detector perform close to DDNP

152 CHAPTER 5. DATA DEPENDENT DETECTORS

detectors, which in turn perform close to the optimal data dependent auto-

regressive detectors, but without the complexity limitation of the auto-regressive

detector, or the implementation issues due to the long feedback path of the

DDNP detector.

Note that we can employ more than just a single pre-detector. Multiple de-

tectors can be connected with the survivor information feeding the branch

metric unit on the next detector, thus providing increasingly accurate sur-

vivor information for the final main detector.

5.5.1 Simulation Results

The following plot shows the relative performance of a double detector detec-

tor compared to a data dependent auto-regressive detector, a data dependent

noise predictive detector and a white noise detector.

The choice of target for the white noise detector was determined using the

minimum mean squared error (MMSE) criteria, whilst the target for the data

dependent detectors was chosen as the best performing target obtained from

a target search.

5.5. DOUBLE DETECTORS 153

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16 17 18

B
E
R

SNR (dB)

T50=1.4 WN=10% PosJ=81% PhaJ=9% Channel : 100000 sectors

4 State White Noise MMSE Detector BER

256 State AR [1 3 3] L=3 D=5 Detector BER

16 State AR [1 3 3] L=2 D=2 Detector BER

4 State DDNP [1 3 3] L=3 D=5 Detector BER

8 State Double Detector [1 3 3] L=3 D=5 Detector BER

16 State Double Detector [1 3 3] L=3 D=5 Detector BER

Figure 5.10: Comparison of white noise MMSE detector, data dependent
auto-regressive detector, data dependent noise predictive detector and double
detector.

154 CHAPTER 5. DATA DEPENDENT DETECTORS

Chapter 6

Cost Function

In this chapter we introduce a method of accurately estimating the bit error

rate of a maximum likelihood detector with specified parameters (such as

equaliser coefficients and ISI target), from only the statistics of the received

signal.

Such an estimate is important, as it provides a theoretic means of determining

the optimal parameters for the detector, without the need for numerical

simulation.

In this chapter we shall only consider the problem of choosing the optimal

ISI target for a white noise detector. However this approach can be extended

to more complex detectors which require computation of other parameters,

such as the noise predictive finite impulse response filter coefficients in auto-

regressive detectors.

155

156 CHAPTER 6. COST FUNCTION

6.1 Choosing ISI target and equaliser coeffi-

cients

Ideally, we aim to choose ISI target and equaliser coefficients which minimise

the BER. However this can only be achieved by numerical simulation over a

large search space. Therefore we use alternative criteria based on statistics

of the noise, which allow us to choose the parameters without the need for

numerical simulation.

The first minimisation criteria we shall consider is minimising the power of

the noise relative to the power of the signal, i.e. maximising the signal to

noise ratio (SNR).

However, we shall find that a second criteria which minimises the noise

strength without regard to the power of the signal, but instead subject to a

monic constraint, significantly outperforms maximising SNR. This criteria is

referred to as minimum mean squared error criteria (MMSE) [47].

We shall investigate why MMSE outperforms maximising SNR, and show

that MMSE is equivalent to whitening the noise.

Finally we shall introduce an estimate for BER from the statistics of the

noise, and use this criteria to find the optimal parameters, and show that

this approach outperforms MMSE.

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 157

6.1.1 Maximum SNR Criteria

Before we decode the received signal using the Viterbi algorithm, we equalise

the signal to a specific ISI target using a finite impulse response filter. We

therefore need to choose an ISI target and equaliser coefficients which give

maximum performance after the Viterbi.

Suppose the ISI target has K coefficients, where K is the constraint length,

the equaliser has 2T + 1 taps and the original data xt ∈ {±1}. We choose

the ISI target coefficients gk and the equaliser coefficients fn such that the

SNR is maximised, where SNR is defined by

SNR = 10 log10




E




(
K−1∑
i=0

gixt−i

)2



E




(
K−1∑
i=0

gixt−i −
T∑

j=−T

fjrt−j

)2






(6.1.1)

Note that if all coefficients gi and fj are scaled by some fixed constant, then

the SNR remains unchanged. Therefore maximising the SNR is equivalent

to minimising the denominator subject to the constraint

K−1∑
i=0

g2
i = 1 (6.1.2)

since

E [xtxt−i] =





1 if i = 0

0 otherwise

(6.1.3)

Introducing a Lagrange multiplier λ for the constraint, we need to minimise

158 CHAPTER 6. COST FUNCTION

the function

R(g, f , λ) = E




(
K−1∑
i=0

gixt−i −
T∑

j=−T

fjrt−j

)2

− λ

(
K−1∑
i=0

g2
i − 1

)
(6.1.4)

Taking partial derivatives with respect to each ISI target coefficient gk and

filter coefficient fn

∂R

∂λ
=

K−1∑
i=0

g2
i − 1

∂R

∂gk

= 2E

[(
K−1∑
i=0

gixt−i −
T∑

j=−T

fjrt−j

)
xt−k

]
− 2λgk for k = 0, . . . , K − 1

∂R

∂fn

= −2E

[(
K−1∑
i=0

gixt−i −
T∑

j=−T

fjrt−j

)
rt−n

]
for n = −T, . . . , T

(6.1.5)

At the minimum, the partial derivatives ∂R
∂λ

= ∂R
∂gk

= ∂R
∂fn

= 0, therefore we

must simultaneously solve

K−1∑
i=0

g2
i = 1

K−1∑
i=0

giE [xt−ixt−k]− λgk =
T∑

j=−T

fjE [rt−jxt−k] for k = 0, . . . , K − 1

K−1∑
i=0

giE [xt−irt−n] =
T∑

j=−T

fjE [rt−jrt−n] for n = −T, . . . , T

(6.1.6)

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 159

which we can rewrite as

K−1∑
i=0

g2
i = 1

K−1∑
i=0

Xk,igi − λgk =
T∑

j=−T

Vj,kfj for k = 0, . . . , K − 1

K−1∑
i=0

Vn,igi =
T∑

j=−T

Cn,jfj for n = −T, . . . , T

(6.1.7)

where

Xk,i = E [xt−ixt−k]

Vn,i = E [xt−irt−n]

Cn,j = E [rt−jrt−n]

(6.1.8)

Moreover, we can express (6.1.7) in matrix form as

gT g = 1

(X− λI)g = VT f

Vg = Cf

(6.1.9)

where

X : {0, . . . , K − 1} × {0, . . . , K − 1} → R

V : {−T, . . . , T} × {0, . . . , K − 1} → R

C : {−T, . . . , T} × {−T, . . . , T} → R

I : {0, . . . , K − 1} × {0, . . . , K − 1} → R

(6.1.10)

from which we can eliminate f = C−1Vg giving

(X−VTC−1V − λI)g = 0 (6.1.11)

160 CHAPTER 6. COST FUNCTION

Solutions to (6.1.11) are therefore given by the eigenvectors of matrix X −
VTC−1V. We can determine the value of the noise function (6.1.4) at a

solution g to be

R = gTXg − 2fTVg + fTCf

= gTXg − 2(C−1Vg)TVg + (C−1Vg)TC(C−1Vg)

= gTXg − 2gTVTC−1T
Vg + gTVTC−1T

CC−1Vg

= gTXg − gTVTC−1T
Vg

= gT (X−VTC−1T
V)g

= gT (X−VTC−1V)g since CT = C

= gT (λI)g

= λgT g

= λ

(6.1.12)

which is the eigenvalue corresponding to the eigenvector g. Hence the global

minimum is given by the eigenvector corresponding to the smallest eigenvalue

of the matrix X−VTC−1V.

6.1.2 Minimum Mean Squared Error Criteria

Let us choose as the minimisation criteria, to minimise the noise energy

E = E




(
K−1∑
i=0

gixt−i −
T∑

j=−T

fjrt−j

)2

 (6.1.13)

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 161

subject to the constraint g0 = 1. Therefore we need to minimise the function

R(g, f) = E




(
xt +

K−1∑
i=1

gixt−i −
T∑

j=−T

fjrt−j

)2

 (6.1.14)

Taking partial derivatives with respect to each ISI target coefficient gk and

filter coefficient fn

∂R

∂gk

= 2E

[(
xt +

K−1∑
i=1

gixt−i −
T∑

j=−T

fjrt−j

)
xt−k

]
for k = 1, . . . , K − 1

∂R

∂fn

= −2E

[(
xt +

K−1∑
i=1

gixt−i −
T∑

j=−T

fjrt−j

)
rt−n

]
for n = −T, . . . , T

(6.1.15)

At the minimum, the partial derivatives ∂R
∂gk

= ∂R
∂fn

= 0, therefore we must

simultaneously solve

E [xtxt−k] +
K−1∑
i=1

giE [xt−ixt−k] =
T∑

j=−T

fjE [rt−jxt−k] for k = 1, . . . , K − 1

E [xtrt−n] +
K−1∑
i=1

giE [xt−irt−n] =
T∑

j=−T

fjE [rt−jrt−n] for n = −T, . . . , T

(6.1.16)

which we can rewrite as

xk +
K−1∑
i=1

Xk,igi =
T∑

j=−T

Vj,kfj for k = 1, . . . , K − 1

vn +
K−1∑
i=1

Vn,igi =
T∑

j=−T

Cn,jfj for n = −T, . . . , T

(6.1.17)

162 CHAPTER 6. COST FUNCTION

where

xk = E [xtxt−k]

vn = E [xtrt−n]

Xk,i = E [xt−ixt−k]

Vn,i = E [xt−irt−n]

Cn,j = E [rt−jrt−n]

(6.1.18)

Moreover, we can express (6.1.17) in matrix form as

x + Xg = VT f

v + Vg = Cf

(6.1.19)

where

x : {1, . . . , K − 1} → R

v : {−T, . . . , T} → R

X : {1, . . . , K − 1} × {1, . . . , K − 1} → R

V : {−T, . . . , T} × {1, . . . , K − 1} → R

C : {−T, . . . , T} × {−T, . . . , T} → R

(6.1.20)

from which we can eliminate f = C−1(v + Vg) giving

x + Xg = VTC−1(v + Vg)

(X−VTC−1V)g = VTC−1v − x

g = (X−VTC−1V)−1(VTC−1v − x)

(6.1.21)

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 163

Therefore we can determine the equaliser coefficients and ISI target as follows

f = C−1(v + V(X−VTC−1V)−1(VTC−1v − x))

g = (X−VTC−1V)−1(VTC−1v − x)

(6.1.22)

6.1.3 Noise Spectra

The following plots show for various noise models, the noise spectrum of the

unequalised received signal and the noise equalised to targets selected by

maximum SNR and MMSE criterion.

Before considering a realistic channel, consider the ideal [1 3 3 1] ISI channel

with only additive white Gaussian noise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

N
or

m
al

is
ed

 M
ag

ni
tu

de

Figure 6.1: Spectrum of unequalised received signal for [1 3 3 1] AWGN
channel.

164 CHAPTER 6. COST FUNCTION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

N
or

m
al

is
ed

 M
ag

ni
tu

de

Figure 6.2: Spectrum of received signal equalised to target [1 2.1 2.1 1] as
chosen by SNR criteria for [1 3 3 1] AWGN channel.

Note that the spectrum of the received signal equalised to the target as chosen

by the minimum SNR criteria shows the noise is not white, but strongly

correlated. A white noise detector is only optimal for white noise, therefore

the above spectrum may explain the poor performance of this target (see

table 6.1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

N
or

m
al

is
ed

 M
ag

ni
tu

de

Figure 6.3: Spectrum of received signal equalised to target [1 1.1 0.6 0.1] as
chosen by MMSE criteria for [1 3 3 1] AWGN channel.

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 165

The following table shows that the MMSE criteria chooses a target which

performs almost as well as the ideal target for this trivial channel, but the

coefficients of the target differ significantly. Also the maximum SNR criteria

demonstrably increases the SNR after the equaliser, but this actually yields

poor performance.

Criteria Target Experimental SNR BER

Ideal [1 3 3 1] 12.5 dB 2.84× 10−3

SNR [1 2.1 2.1 1] 15.3 dB 6.98× 10−3

MMSE [1 1.1 0.6 0.1] 12.7 dB 2.89× 10−3

Table 6.1: Comparison of performance at 12.5 dB for [1 3 3 1] AWGN channel.

Next consider a realistic channel as described in (4.1.1) with 70% media

noise, where the media noise consists of 100% position jitter, and the error

function describes the isolated transitions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

N
or

m
al

is
ed

 M
ag

ni
tu

de

Figure 6.4: Spectrum of unequalised received signal for 70% position jitter
erf channel.

166 CHAPTER 6. COST FUNCTION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

N
or

m
al

is
ed

 M
ag

ni
tu

de

Figure 6.5: Spectrum of received signal equalised to target [1.00 2.21 2.21
1.00] as chosen by SNR criteria for 70% position jitter erf channel.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

N
or

m
al

is
ed

 M
ag

ni
tu

de

Figure 6.6: Spectrum of received signal equalised to target [1.00 0.97 0.32
-0.04] as chosen by MMSE criteria for 70% position jitter erf channel.

Again for the realistic channel, the maximum SNR criteria achieves the high-

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 167

est SNR, but MMSE achieves better performance.

Criteria Target Experimental SNR BER

SNR [1.00 2.21 2.21 1.00] 14.5 dB 2.23× 10−2

MMSE [1.00 0.97 0.32 -0.04] 11.8 dB 6.98× 10−3

Table 6.2: Comparison of performance at 14.0 dB for 70% position jitter erf
channel.

Next consider a jitter dominated channel as described in (4.1.1) with 90%

media noise, where the media noise consists of 90% position jitter and 10%

phase jitter, and the error function describes the isolated transitions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

N
or

m
al

is
ed

 M
ag

ni
tu

de

Figure 6.7: Spectrum of unequalised received signal for 90% media noise 90%
position jitter erf channel.

168 CHAPTER 6. COST FUNCTION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

N
or

m
al

is
ed

 M
ag

ni
tu

de

Figure 6.8: Spectrum of received signal equalised to target [1.00 2.23 2.22
0.98] as chosen by SNR criteria for 90% media noise 90% position jitter erf
channel.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

N
or

m
al

is
ed

 M
ag

ni
tu

de

Figure 6.9: Spectrum of received signal equalised to target [1.00 0.87 0.15
-0.07] as chosen by MMSE criteria for 90% media noise 90% position jitter
erf channel.

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 169

The following plot shows the relative performance of the targets chosen by

the maximum SNR and MMSE criteria.

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16 17 18

B
E
R

SNR (dB)

T50=1.4 WN=10% PosJ=81% PhaJ=9% Erf Channel : White Noise Detector : 100000 sectors

Minimise SNR

MMSE

Figure 6.10: Comparison of performance for 90% media noise 90% position
jitter erf channel.

Finally consider a channel with the same parameters as above, but which

uses hyperbolic tangent to describe the isolated transitions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

No
rm

al
ise

d
M

ag
ni

tu
de

Figure 6.11: Spectrum of unequalised received signal for 90% media noise
90% position jitter tanh channel.

170 CHAPTER 6. COST FUNCTION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

N
or

m
al

is
ed

 M
ag

ni
tu

de

Figure 6.12: Spectrum of received signal equalised to target [1.00 2.19 2.18
0.98] as chosen by SNR criteria for 90% media noise 90% position jitter tanh
channel.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

N
or

m
al

is
ed

 M
ag

ni
tu

de

Figure 6.13: Spectrum of received signal equalised to target [1.00 0.81 0.09
-0.03] as chosen by MMSE criteria for 90% media noise 90% position jitter
tanh channel.

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 171

Criteria Target Experimental SNR BER

SNR [1.00 2.19 2.18 0.98] 14.8 dB 1.99× 10−2

MMSE [1.00 0.81 0.09 -0.03] 12.3 dB 1.68× 10−3

Table 6.3: Comparison of performance at 14.0 dB for 90% media noise 90%
position jitter tanh channel.

Note that the spectra for the targets chosen by MMSE are all flat, indicating

a whitening of the signal.

6.1.4 MMSE Equivalence to Whitening Noise

Suppose we have an equaliser and target of infinite length and we choose the

filter and target coefficients to minimise the noise energy, E [n2
t], subject to

the constraint g0 = 1 [47], where

nt =
∞∑
i=0

gixt−i −
∞∑

j=−∞
fjrt−j (6.1.23)

Since we have chosen the filter and target coefficients to minimise the noise

energy, we have
∂

∂gk

E
[
n2

t

]
= 0 for k > 0

∂

∂fn

E
[
n2

t

]
= 0 for all n

(6.1.24)

Let us now consider the correlations between the noise nt and the coefficients

gk, fn by differentiating E [n2
t].

0 =
1

2

∂

∂gk

E
[
n2

t

]
= E

[
nt

∂nt

∂gk

]
= E [ntxt−k] for k > 0

0 = −1

2

∂

∂fn

E
[
n2

t

]
= −E

[
nt

∂nt

∂fn

]
= E [ntrt−n] for all n

(6.1.25)

172 CHAPTER 6. COST FUNCTION

Therefore if we consider the correlations between noise samples nt and nt−k

for k > 0 then

E [ntnt−k] = E

[
nt

(∞∑
i=0

gixt−k−i −
∞∑

j=−∞
fjrt−k−j

)]

=
∞∑
i=0

giE [ntxt−k−i]−
∞∑

j=−∞
fjE [ntrt−k−j]

= 0

(6.1.26)

Hence minimising the noise energy is equivalent to whitening the noise. This

can be confirmed by observing the spectrum of the noise. Note how using the

MMSE criteria results in a flat spectrum 6.3, 6.6, 6.9, 6.13, in comparison

with the maximum SNR criteria 6.2, 6.5, 6.8, 6.12.

6.1.5 Minimise Bit Error Rate Criteria

In this section, we aim to create an accurate estimate of the BER based

only on the statistics of the received signal and the coefficients of the target

polynomial. We can then use this estimate as part of a steepest descent

algorithm to find the target coefficients which minimise BER.

The BER is defined as

BER =
1

N

N−1∑
i=0

P(x̂i 6= xi) (6.1.27)

where xi are the original data, and x̂i are the estimates provided by the

Viterbi detector. Assuming translational invariance of the channel, P(x̂i 6=

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 173

xi) = P(x̂j 6= xj), therefore we can restrict ourselves to considerations at a

specific time i.

BER = P(x̂i 6= xi) (6.1.28)

Fix the original and received signals by conditioning over all possible original

sequences, x, and received signals, r.

BER =
∑
x,r

P(x̂i 6= xi | x, r)P(x, r) (6.1.29)

The estimates x̂ provided by the Viterbi detector correspond to the path

taken by the shortest path through the trellis. Therefore an error occurs at

time i if and only if the i-th bit of the shortest path differs from the original

data.

P(x̂i 6= xi | x, r) =
∑

{P∈P|P (i) 6=xi}
P

(
PM(P) = min

Pj∈P
{PM(Pj)} | x, r

)

=
∑

{P∈P|P (i) 6=xi}
P(PM(P) ≤ PM(Pj),∀Pj ∈ P | x, r)

(6.1.30)

where P is the set of all paths and P (i) refers to the value of the i-th bit of

the path P . Separating the event when P is the correct path through the

trellis x we find that

P(x̂i 6= xi | x, r) =
∑

{P∈P|P (i) 6=xi}
P(PM(P) ≤ PM(x) | x, r)×

P(PM(P) ≤ PM(Pj),∀Pj 6= x | PM(P) ≤ PM(x), x, r)

(6.1.31)

Note that the event {PM(P) ≤ PM(Pj),∀Pj 6= x | PM(P) ≤ PM(x), x, r} does

174 CHAPTER 6. COST FUNCTION

not occur if and only if there exists some j such that

PM(Pj) < PM(P) ≤ PM(x) (6.1.32)

This implies there exists at least two paths through the trellis with path

metric lower than the path metric of the correct path. As the SNR increases,

the probability of multiple paths having a greater likelihood than the correct

path decreases. In particular in the absence of noise, the probability of paths

having path metric less than that of the correct path is zero, consequently

lim
SNR→∞

P(PM(P) ≤ PM(Pj),∀Pj 6= x | PM(P) ≤ PM(x), x, r) = 1

(6.1.33)

Therefore we can use the following bound for BER, which is a tight bound

for high SNR.

P(x̂i 6= xi | x, r) ≤
∑

{P∈P|P (i) 6=xi}
P(PM(P) ≤ PM(x) | x, r) (6.1.34)

Since we have assumed the channel is translationally invariant, instead of

considering every path P ∈ P that differs from the correct path at time i,

we can consider all paths which re-converge with the correct path x at a

specified time, say t.

In the original formulation, a divergent path that re-converges at time t

and contains multiple errors, will be offset to each position where an error

occurs, and each such offset will contribute separately to the summation. In

our reformulation, we count each path exactly once, and weight that path by

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 175

the number of positions where P (j) 6= xj. Therefore

P(x̂i 6= xi | x, r) ≤
∑

{P∈P|P (j)=xj for j > t}
P 6=x

W (P)P(PM(P) ≤ PM(x) | x, r)

(6.1.35)

where W (P) =
∣∣{j | P (j) 6= xj

}∣∣ is the weight of the path.

For numerical computation, we require a finite sum approximation to the

above infinite sum. We choose to limit the number of paths considered to

those which diverge for less than a fixed number of steps. Therefore we have

the following approximation

P(x̂i 6= xi | x, r)

≈
∑

{P∈P|P (j)=xj for j < t− L and j > t}
P 6=x

W (P)P(PM(P) ≤ PM(x) | x, r)

(6.1.36)

This will be a good approximation since the nature of the Viterbi algorithm

is for paths to re-converge with high probability after relatively few time

steps.

Let us now fix the original data and received signal, and consider for each

path P the probability P(PM(P) ≤ PM(x)). Let PMideal = PM(x) be

the path metric corresponding to the ideal path through the trellis, and let

PMerror be the path metric corresponding to the path through the trellis

caused by an error event, which re-converges with the ideal path at time t.

176 CHAPTER 6. COST FUNCTION

Output 0

Output 1

Maximum Likelihood Path

Error Event

11

00

01

10

1 1 1 00
1 0

0 1 0

1

Figure 6.14: 4 state trellis showing maximum likelihood path and error event.

Note that the length of the divergence between the ideal and the error path

is K + L − 1, where K is the constraint length and L is the length of the

error event.

The error path will be chosen instead of the correct path if

PMerror < PMactual (6.1.37)

We need to estimate the probability

P(PMerror < PMactual) = P(PMerror − PMactual < 0) (6.1.38)

Therefore we must consider the path metric difference

PMerror − PMactual =
∞∑

i=−∞
(yi −Wi)

2 −
∞∑

i=−∞
(yi − Ii)

2
(6.1.39)

where yi are the equalised received signals, Ii are the ideal branch labels and

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 177

Wi are the branch labels corresponding to the error event path. Then

PMerror − PMactual =
∞∑

i=−∞
W 2

i − I2
i − 2(Wi − Ii)yi

=
t∑

i=t−K−L+2

W 2
i − I2

i − 2(Wi − Ii)yi

=
K−L+2∑

i=0

W 2
t−i − I2

t−i − 2(Wt−i − It−i)yt−i

=
K−L+2∑

i=0

βi − 2αiyt−i

(6.1.40)

since Wi = Ii for i > t and i < t − K − L + 2 (recalling the length of the

divergence is K + L − 1), where αi = Wt−i − It−i and βi = W 2
t−i − I2

t−i =

(Wt−i − It−i)(Wt−i + It−i).

Note that αi and βi depend only on the original data and the target coef-

ficients, therefore if we make the pattern sufficiently long, we may consider

these values as constants for a particular pattern. Since Wi depends on K

bits of the original data, we require a total pattern length of 2K + L− 2 to

cover the whole error event.

Example 6.1.1 (1-bit error event). Let us consider the example of a 1-bit

error event (L = 1) on a 4-state detector (K = 3). The path corresponding

to the error event diverges from the correct path when the error occurs, and

re-converges 3 steps later, say at time t at state xt−1, xt.

The paths therefore diverged from state xt−4, xt−3 with the correct path

passing through states xt−3, xt−2 and xt−2, xt−1, whilst the error path passes

through states xt−3, xt−2 and xt−2, xt−1.

178 CHAPTER 6. COST FUNCTION

Therefore we can calculate the branch labels corresponding the the actual

and error paths (note that we are assuming xi ∈ {±1}, therefore xi = −xi)

It = g0xt + g1xt−1 + g2xt−2 Wt = g0xt + g1xt−1 − g2xt−2

It−1 = g0xt−1 + g1xt−2 + g2xt−3 Wt−1 = g0xt−1 − g1xt−2 + g2xt−3

It−2 = g0xt−2 + g1xt−3 + g2xt−4 Wt−2 = −g0xt−2 + g1xt−3 + g2xt−4

(6.1.41)

Hence the path metric differences and sums are given by

Wt − It = −2g2xt−2 Wt + It = 2(g0xt + g1xt−1)

Wt−1 − It−1 = −2g1xt−2 Wt−1 + It−1 = 2(g0xt−1 + g2xt−3)

Wt−2 − It−2 = −2g0xt−2 Wt−2 + It−2 = 2(g1xt−3 + g2xt−4)

(6.1.42)

From the above, we can compute αi and βi for any pattern. For example,

consider the alternating pattern {xt−4, xt−3, xt−2, xt−1, xt} = {1,−1, 1,−1, 1}

α0 = −2g2 β0 = −4g2(g0 + g1)

α1 = −2g1 β1 = −4g1(−g0 +−g2)

α2 = −2g0 β2 = −4g0(−g1 + g2)

(6.1.43)

Referring back to (6.1.40), we see that the path metric difference is a linear

combination of conditionally Gaussian random variables, therefore the path

metric difference is also conditionally Gaussian. This implies that for a given

pattern x = xt−2K−L+3, . . . , xt

PMerror − PMactual ∼ N(µ, σ2) (6.1.44)

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 179

where the mean and variance are trivially given by

µ = E [PMerror − PMactual]

σ2 = Var [PMerror − PMactual]

(6.1.45)

Therefore if we subtract the mean and normalise

PMerror − PMactual − E [PMerror − PMactual]√
Var [PMerror − PMactual]

∼ N(0, 1) (6.1.46)

which allows us to express the probability of this particular error event, for

a given pattern, as

P(PMerror < PMactual | x)

= P(PMerror − PMactual < 0 | x)

= P

(
PMerror − PMactual − E [PMerror − PMactual]√

Var [PMerror − PMactual]

< − E [PMerror − PMactual]√
Var [PMerror − PMactual]

| x
)

=
1

2
erfc

(
E [PMerror − PMactual]√
Var [PMerror − PMactual]

)

(6.1.47)

We can then average over all patterns to get an estimate of the BER for this

particular error event.

P(PMerror < PMactual) =
∑

x∈{±1}2K+L−2

P(PMerror < PMactual | x) (6.1.48)

In order to compute the above, we need to determine E [PMerror − PMactual]

and Var [PMerror − PMactual]. We will show that these can be determined

180 CHAPTER 6. COST FUNCTION

directly from the statistics of the noise.

Firstly, let us consider the mean of the path metric difference. We can express

this expectation in terms of the statistics of the equalised received signal yi

E [PMerror − PMactual] = E

[
K−L+2∑

i=0

βi − 2αiyt−i

]

=
K−L+2∑

i=0

βi − 2αiE [yt−i]

(6.1.49)

Secondly, let us consider the variance of the path metric difference. This

requires the calculation of the square of the path metric difference

(PMerror − PMactual)
2

=

(
K−L+2∑

i=0

βi − 2αiyt−i

)2

=
K−L+2∑

i=0

K−L+2∑
j=0

(βi − 2αiyt−i)(βj − 2αjyt−j)

=
K−L+2∑

i=0

K−L+2∑
j=0

βiβj − 2αiβjyt−i − 2αjβiyt−j + 4αiαjyt−iyt−j

=
K−L+2∑

i=0

K−L+2∑
j=0

βiβj − 4αiβjyt−i + 4αiαjyt−iyt−j

(6.1.50)

Therefore the variance can be determined from the square of the expectation

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 181

of the path metric difference

E2 [PMerror − PMactual]

=

(
K−L+2∑

i=0

βi − 2αiE [yt−i]

)2

=
K−L+2∑

i=0

K−L+2∑
j=0

βiβj − 2αiβjE [yt−i]− 2αjβiE [yt−j] + 4αiαjE [yt−i]E [yt−j]

=
K−L+2∑

i=0

K−L+2∑
j=0

βiβj − 4αiβjE [yt−i] + 4αiαjE [yt−i]E [yt−j]

(6.1.51)

and the expectation of the squared path metric difference

E
[
(PMerror − PMactual)

2
]

= E

[
K−L+2∑

i=0

K−L+2∑
j=0

βiβj − 4αiβjyt−i + 4αiαjyt−iyt−j

]

=
K−L+2∑

i=0

K−L+2∑
j=0

βiβj − 4αiβjE [yt−i] + 4αiαjE [yt−iyt−j]

(6.1.52)

which gives the following expression for the variance

Var [PMerror − PMactual]

= E
[
(PMerror − PMactual)

2
]− E2 [PMerror − PMactual]

=
K−L+2∑

i=0

K−L+2∑
j=0

4αiαjE [yt−iyt−j]− 4αiαjE [yt−i]E [yt−j]

= 4
K−L+2∑

i=0

K−L+2∑
j=0

αiαj(E [yt−iyt−j]− E [yt−i]E [yt−j])

(6.1.53)

The above relies on pattern dependent statistics of the equalised received

182 CHAPTER 6. COST FUNCTION

signal. However, we want to use only the statistics of the actual unequalised

received signal. Therefore we must specify the type of equaliser to be used.

A key use for the BER estimate is to provide an analytical means of finding

the optimal equaliser and ISI target coefficients. This still leaves a large

search space of parameters, however we can reduce the problem to finding

only the optimal ISI coefficients if we assume the following data independent

equaliser, the coefficients of which can be determined directly from the ISI

target and noise statistics (6.1.61).

We choose the filter coefficients fj to minimise the squared difference between

the ideal received signal for a given target, and the filtered received signal,

yt, which is a linear combination of the actual received signal, rt

yt =
T∑

j=−T

fjrt−j (6.1.54)

Therefore we need to minimise the function

R(f) = E




(
K−1∑
i=0

gixt−i −
T∑

j=−T

fjrt−j

)2

 (6.1.55)

Taking partial derivatives with respect to each filter coefficient fn

∂R

∂fn

= −2E

[(
K−1∑
i=0

gixt−i −
T∑

j=−T

fjrt−j

)
rt−n

]
for n = −T, . . . , T

(6.1.56)

At the minimum, the partial derivatives ∂R
∂fn

= 0, therefore we must simulta-

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 183

neously solve

K−1∑
i=0

giE [xt−irt−n] =
T∑

j=−T

fjE [rt−jrt−n] for n = −T, . . . , T (6.1.57)

which we can rewrite as

K−1∑
i=0

Vn,igi =
T∑

j=−T

Cn,jfj for n = −T, . . . , T (6.1.58)

where

Vn,i = E [xt−irt−n]

Cn,j = E [rt−jrt−n]

(6.1.59)

Moreover, we can express (6.1.58) in matrix form as

Vg = Cf (6.1.60)

Therefore we can determine the filter coefficients f as follows

f = C−1Vg (6.1.61)

Note that C−1V is determined only from the original data and the received

signal. In particular it is pattern independent and independent of the target.

Let F be an (2T + 1) × K matrix with entries Fi,j, such that F = C−1V,

then we can express the equalised received signal as

yt =
T∑

j=−T

fjrt−j =
T∑

j=−T

K−1∑

k=0

Fj,kgkrt−j (6.1.62)

184 CHAPTER 6. COST FUNCTION

Therefore we can rewrite the expressions for the mean and variance of the

path metric difference for a given pattern as

E [PMerror − PMactual] =
K−L+2∑

i=0

(βi − 2αiE [yt−i])

=
K−L+2∑

i=0

βi − 2
K−L+2∑

i=0

T∑
j=−T

αifjE [rt−i−j]

(6.1.63)

and

Var [PMerror − PMactual]

= 4
K−L+2∑

i=0

K−L+2∑
j=0

αiαj(E [yt−iyt−j]− E [yt−i]E [yt−j])

= 4
K−L+2∑

i=0

K−L+2∑
j=0

T∑

k=−T

T∑

l=−T

αiαjfkfl(E [rt−i−krt−j−l]− E [rt−i−k]E [rt−j−l])

(6.1.64)

These expressions may further be simplified to

E [PMerror − PMactual] =
K−L+2∑

i=0

βi − 2
T+K−L+2∑

i=−T

γiE [rt−i] (6.1.65)

and

Var [PMerror − PMactual]

= 4
T+K−L+2∑

i=−T

T+K−L+2∑
j=−T

γiγj(E [rt−irt−j]− E [rt−i]E [rt−j])
(6.1.66)

where

γk =
∑

i+j=k

αifj =
∑

i+j=k

K−1∑

l=0

αiFj,lgl (6.1.67)

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 185

This gives us an expression for the BER of a particular error event in terms

of the statistics of the received signal, and the coefficients of the target poly-

nomial.

To demonstrate the accuracy of our estimate of BER, consider the following

plot which shows the BER as predicted by the cost function against the

actual BER as measured for numerical simulation for the ideal [1 3 3 1] ISI

channel, using a white noise detector with target [1 3 3 1].

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16

B
E
R

SNR (dB)

[1 3 3 1] AWGN Channel : [1 3 3 1] White Noise Detector : 100000 sectors

Experimental BER
Estimated BER

Figure 6.15: Estimated BER for white noise channel.

Next consider a realistic jitter dominated channel as described in (4.1.1) with

90% media noise, where the media noise consists of 90% position jitter and

10% phase jitter, and the error function describes the isolated transitions.

The plot shows the BER as predicted by the cost function against the actual

186 CHAPTER 6. COST FUNCTION

BER as measured for numerical simulation for white noise detectors with

targets [1 3 3 1] and [2 6 3 -1].

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 8 9 10 11 12 13 14 15 16 17 18

B
E
R

SNR (dB)

T50=1.4 WN=10% PosJ=81% PhaJ=9% Erf Channel : White Noise Detector : 100000 sectors

Experimental BER [2 6 3 -1]
Estimated BER [2 6 3 -1]

Experimental BER [1 3 3 1]
Estimated BER [1 3 3 1]

Figure 6.16: Estimated BER for jitter dominated channel with erf isolated
transition.

In contract to the MMSE criteria, minimising BER does not whiten the noise.

However observation of the spectrum reveals the noise is essentially white

but with a low pass characteristic. Removing the high frequency noise seems

intuitive since the most dangerous error events correspond to the rapidly

alternating paths through the trellis.

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 187

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

No
rm

ali
se

d
M

ag
nit

ud
e

Figure 6.17: Spectrum of received signal equalised to target [1.00 2.06 1.13
-0.41] as chosen by BER criteria for 70% position jitter erf channel.

The following table shows that the target as selected by the BER criteria out

performs the MMSE criteria.

Criteria Target Experimental SNR BER

SNR [1.00 2.21 2.21 1.00] 14.5 dB 2.23× 10−2

MMSE [1.00 0.97 0.32 -0.04] 11.8 dB 6.98× 10−3

BER [1.00 2.06 1.13 -0.41] 12.1 dB 6.29× 10−3

Table 6.4: Comparison of performance at 14.0 dB for 70% position jitter erf
channel.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

No
rm

ali
se

d
M

ag
nit

ud
e

Figure 6.18: Spectrum of received signal equalised to target [1.00 1.11 0.12
-0.14] as chosen by BER criteria for 90% media noise 90% position jitter erf
channel.

188 CHAPTER 6. COST FUNCTION

The following plot shows that the target as selected by the BER criteria out

performs the MMSE criteria, and that the gap in dB is actually increasing

as BER decreases.

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16 17 18

B
E
R

SNR (dB)

T50=1.4 WN=10% PosJ=81% PhaJ=9% Erf Channel : White Noise Detector : 100000 sectors

MMSE

Minimise BER

Figure 6.19: Comparison of performance for 90% media noise 90% position
jitter erf channel.

The following plot shows the same trend again with a different isolated tran-

sition, showing that the BER criteria is resilient to different types of isolated

transition.

6.1. CHOOSING ISI TARGET AND EQUALISER COEFFICIENTS 189

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised Frequency

N
or

m
al

is
ed

 M
ag

ni
tu

de

Figure 6.20: Spectrum of received signal equalised to target [1.00 2.97 1.13
-0.52] as chosen by BER criteria for 90% media noise 90% position jitter tanh
channel.

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16 17 18

B
E
R

SNR (dB)

T50=1.4 WN=10% PosJ=81% PhaJ=9% Tanh Channel : White Noise Detector : 100000 sectors

MMSE

Minimise BER

Figure 6.21: Comparison of performance for 90% media noise 90% position
jitter tanh channel.

190 CHAPTER 6. COST FUNCTION

Chapter 7

Binary Addition

7.1 Introduction

When implementing a high performance Viterbi detector, we need a high

speed implementation of a binary adder.

Binary addition is also a fundamental operation in computer arithmetic,

and can be the limiting factor in determining the performance of processors,

such as general purpose processors (CPU), 3D graphics processors (GPU),

or digital signal processors (DSP).

Often designs can be pipelined by splitting the logic into multiple clock

stages. This makes performance less of an issue, since additional pipeline

stages can be added to meet performance requirements, as adding states

reduces the logic per stage.

But when the result of the previous operation is required for the present

191

192 CHAPTER 7. BINARY ADDITION

operation, this feedback loop prevents pipelining.

We see such a feedback loop in the ACS unit of Viterbi detectors, where path

metrics must be added to the branch metrics, before a comparison selects the

shortest path.

Another example is the address generation unit of a processor, where an

offset determined by the current instruction is added to the address pointer

which indexes the next instruction.

7.2 Background

An n-bit binary adder takes two n-bit binary numbers, a, b, and produces

their (n + 1)-bit binary sum, s.

For example, an 8-bit binary adder takes two 8-bit binary (0-255 decimal)

numbers, say 175 & 178, and produces their 9-bit binary (0-511 decimal)

sum, in this case 353.

1 0 1 1 0 0 1 0 (178)

+ 1 0 1 0 1 1 1 1 (175)

1 0 1 1 0 0 0 0 1 (353)

We can represent this in general as follows:

a7 a6 a5 a4 a3 a2 a1 a0

+ b7 b6 b5 b4 b3 b2 b1 b0

s8 s7 s6 s5 s4 s3 s2 s1 s0

We must find expressions for each {si} in terms of the inputs {ai} and {bi}.

7.2. BACKGROUND 193

s0 can be determined by considering the following 4 cases

s0 =





0 if a0 = 0 and b0 = 0

1 if a0 = 0 and b0 = 1

1 if a0 = 1 and b0 = 0

0 if a0 = 1 and b0 = 1

(7.2.1)

Therefore s0 is 1 if exactly one of a0 and b0 is high (but not both). This is

known in logic as an “exclusive-OR”, and is represented as

s0 = a0 ⊕ b0 (7.2.2)

In the case when both a0 and b0 are 1, a carry is generated in the second

column. Therefore the carry, c1, is given by the logical “AND” of a0 and b0,

and is represented as

c1 = a0b0 (7.2.3)

This reduces the problem to the following

a7 a6 a5 a4 a3 a2 a1

+ b7 b6 b5 b4 b3 b2 b1

+ c1

s8 s7 s6 s5 s4 s3 s2 s1 s0

We can now perform a similar consideration for the second column, and find

194 CHAPTER 7. BINARY ADDITION

expressions for the sum and carry

s1 = a1 ⊕ b1 ⊕ c1

c2 = a1b1 + c1(a1 + b1)

(7.2.4)

where + represents logical “OR”.

This leads immediately to the generalisation, for i ≥ 0

si = ai ⊕ bi ⊕ ci

ci+1 = aibi + ci(ai + bi)

(7.2.5)

7.3 Ripple Carry Adder

The circuit which implements the above method comprises n logic units

connected in series, and is known as a ripple carry adder.

FA FA FA FA
c0c3 c2 c1

s0s1s2s3

cin

a3 b3 a2 b2 a1 b1 a0 b0

Figure 7.1: Ripple carry adder.

Ripple carry adders are ideal for small input sizes as the number of nodes in

the prefix graph is minimised, which should result in a small silicon area.

7.4. CARRY SELECT ADDER 195

Unfortunately the longest path through the a ripple carry adder circuit

(known as the critical path), passes through n logic units, and therefore the

delay through a ripple carry adder increases linearly with the input width.

This makes them impractically slow for most applications, and other methods

with lower delay complexity must be sought.

7.4 Carry Select Adder

Carry select adders [48] reduce the delay through the circuit, at the expense

of increased silicon area, by using the divide and conquer technique.

The “divide” step of a carry select adder separates the most significant bits

and the least significant bits into two separate groups.

a7 a6 a5 a4 a3 a2 a1 a0

+ b7 b6 b5 b4 b3 b2 b1 b0

The sum of the least significant bits is computed as before

a3 a2 a1 a0

+ b3 b2 b1 b0

c4 s3 s2 s1 s0

The sum of the most significant bits is computed in parallel with the LSB’s,

but in duplicate for the two possible cases where the carry out from the least

significant bits, c4, is 0 or 1.

196 CHAPTER 7. BINARY ADDITION

a7 a6 a5 a4

+ b7 b6 b5 b4

+ 0

s
(0)
8 s

(0)
7 s

(0)
6 s

(0)
5 s

(0)
4

a7 a6 a5 a4

+ b7 b6 b5 b4

+ 1

s
(1)
8 s

(1)
7 s

(1)
6 s

(1)
5 s

(1)
4

After all the sums have been computed, Either s(0) or s(1) is selected depend-

ing on the value of c4.

The number of logic levels required is half that of a ripple carry adder to

compute the separate sums, plus a single level to select the correct result.

The “conquer” step of a carry select adder now repeats the “divide” step for

each of the smaller adders, further reducing the size of the adders by half,

whilst only adding a single logic level to select the result.

This can be repeated recursively dlog2 ne times, at which point the adders

will be trivial 1-bit adders, and there will be dlog2 ne logic levels of selections

plus a single level for the 1-bit addition, giving a total of dlog2 ne + 1 logic

levels. For example a 64-bit carry select adder requires 7 logic levels, whilst

a 64-bit ripple carry adders requires 64 logic levels.

7.5 Parallel Prefix Adder

Parallel prefix adders [49, 50] (or variations such as the Ling adder [51] de-

scribed in section 7.7) are considered state of the art, as they have delay

proportional to the logarithm of the input width, as per the carry select

adder, but each individual logic level consists of simpler logic, thereby reduc-

7.5. PARALLEL PREFIX ADDER 197

ing overall delay, and they have a smaller silicon area.

Parallel prefix adders construct the carry from the inputs in a binary tree,

whilst the ripple carry adder constructs the carry serially. Recall

si = ai ⊕ bi ⊕ ci

c0 = 0

ci+1 = aibi + ci(ai + bi) for i ≥ 0

(7.5.1)

To simplify the equations, we introduce the generate and propagate functions

gi = aibi

pi = ai + bi

(7.5.2)

which can be interpreted as follows. A carry is definitely generated into the

next column if both ai AND bi are 1. If a carry is received from the previous

column, then that carry will propagate into the next column if either ai OR

bi are 1. Therefore

ci+1 = gi + pici (7.5.3)

We can apply this formula recursively to find an expression for the carry into

198 CHAPTER 7. BINARY ADDITION

column 4.

c4 = g3 + p3c3

= g3 + p3(g2 + p2c2)

= g3 + p3g2 + p3p2c2

= g3 + p3g2 + p3p2(g1 + p1c0)

= g3 + p3g2 + p3p2g1 + p3p2p1c1

= g3 + p3g2 + p3p2g1 + p3p2p1(g0 + p0c0)

= g3 + p3g2 + p3p2g1 + p3p2p1g0

(7.5.4)

which we will refer to as the group generate function from columns 3 to 0,

and denote G3:0 = c4. In general

Gk−1:0 = ck = gk−1 + pk−1gk−2 + pk−1pk−2gk−3 + . . . + pk−1pk−2pk−3 . . . p1g0

(7.5.5)

Now let us now define the group propagate function Pk−1:0 to be

Pk−1:0 = pk−1pk−2pk−3 . . . p0 (7.5.6)

This give us a framework to construct carries in a systematic way. For

example, the carry into column 4, c4 = G3:0

G3:0 = g3 + p3g2 + p3p2g1 + p3p2p1g0

= (g3 + p3g2) + (p3p2)(g1 + p1g0)

= G3:2 + P3:2G1:0

(7.5.7)

7.5. PARALLEL PREFIX ADDER 199

where G1:0, G3:2 and P3:2 are produced in parallel as

G1:0 = g1 + p1g0

G3:2 = g3 + p3g2

P3:2 = p3p2

(7.5.8)

This allows us to construct each carry in a binary tree. The first level of the

tree computes the bit level generate and propagate functions directly from

the inputs

gi = aibi

pi = ai + bi

(7.5.9)

The subsequent dlog2 ne levels of the tree produce increasingly larger group

generate and group propagate functions by applying the relationship

G = G1 + P1G0

P = P1P0

(7.5.10)

To complete the adder, the sum is computed as si = (ai ⊕ bi)⊕Gi−1:0.

As a rough measure of delay complexity, we can count the number of logic

gates on the critical path, and weight each gate with an approximate delay.

We will count two input AND/OR logic gates as 2 unit delays, and XOR

logic gates as 4 unit delays (since a⊕ b = ab + ab).

The circuit for the first level of the binary tree comprises either an AND for

the generate or an OR for the propagate, both of which are 2 unit delays. For

subsequent levels of the tree, the generate function requires an AND followed

200 CHAPTER 7. BINARY ADDITION

by an OR, whilst the propagate function only requires an AND. Therefore

the critical path is through the generate function and is 4 unit delays. The

final XOR is 4 unit delays.

So the delay complexity for a parallel prefix adder is

PP (n) = 2 + 4dlog2 ne+ 4 = 4dlog2 ne+ 6 (7.5.11)

For example

PP (64) = 30 (7.5.12)

The measure of complexity is an over simplification for measuring the per-

formance of electronic circuits, as it omits several important factors such as

fanout, wire lengths and differences in capacitance between each type of logic

gate.

For a more rigorous approach to measuring the complexity of adders see [52].

We have only discussed how to implement the carry logic for sizes which are

powers of 2. Part of the art on constructing an efficient adder is deciding

how best to implement the other carries, in terms of bit groupings and logic

sharing.

For example Ladner-Fischer adders [50] construct lower order carries by

padding the most significant bits with zeros. This results in the greatest

logic sharing, and consequently the smallest implementation, but also results

in the greatest fanout which slows down the adder.

7.5. PARALLEL PREFIX ADDER 201

Radix-2 Node

Buffer Node

Radix-3 Node

26 0123459 8 7 610111213141516171819202122232425

Figure 7.2: 27-bit Radix-3 Ladner-Fischer Adder.

By contrast, Kogge-Stone adders [49] construct lower order carries by padding

the least significant bits with zeros, and re-indexing each of the inputs. This

results in the least logic sharing and largest area implementation. It is how-

ever often the fastest implementation, as fanout is constant at each logic

level.

Radix-2 Node

Buffer Node

Radix-3 Node

26 0123459 8 7 610111213141516171819202122232425

Figure 7.3: 27-bit Radix-3 Kogge-Stone Adder.

Knowles’ family of adders [53] describe various trade-offs between Ladner-

Fischer and Kogge-Stone adders.

Han-Carlson adders [54] and Brent-Kung adders [55] describe parallel prefix

adders which are not of minimal depth, but offer good area trade-offs.

202 CHAPTER 7. BINARY ADDITION

Other related architectures include carry-lookahead [56] and conditional sum

[57].

However, none of the above describe fundamental differences to the underly-

ing logic used to implement a single carry.

In this thesis, we shall restrict ourselves to considering only the underlying

logic equations, and it will therefore suffice to use our simplified complexity

model.

7.6 High Radix Parallel Prefix Adder

It is possible to build high radix trees, such as ternary trees, which combine 3

group generate functions per level. The larger group generate and propagate

functions are formed as follows

G = G2 + P2G1 + P2P1G0

P = P2P1P0

(7.6.1)

m-ary trees have the advantage of less logic levels (dlogm ne), but each level

is more complex.

G = Gm−1 + Pm−1Gm−2 + . . . + Pm−1 . . . P1G0

P = Pm−1 . . . P0

(7.6.2)

The critical path through the generate function is a m input AND gate,

followed by an m input OR gate.

7.7. LING ADDER 203

If we assume the delay through an m input AND/OR gate is m unit delays,

then the delay complexity for a radix-m parallel prefix adder is

PPm(n) = 2 + 2mdlogm ne+ 4 = 2mdlogm ne+ 6 (7.6.3)

For example

PP4(64) = 8 log4 64 + 6 = 30 (7.6.4)

which is exactly the same as the standard radix-2 parallel prefix adder.

Therefore high radix parallel prefix adders are generally not used, as they

offer no particular advantage of a radix-2 parallel prefix adder.

7.7 Ling Adder

Ling adders [51] do however offer a small advantage over parallel prefix

adders.

Ling adders take advantage of the following identity

pigi = (ai + bi)aibi = aiaibi + biaibi = aibi + aibi = aibi = gi (7.7.1)

Therefore

G3:0 = g3 + p3g2 + p3p2g1 + p3p2p1g0

= p3g3 + p3g2 + p3p2g1 + p3p2p1g0

= p3(g3 + g2 + p2g1 + p2p1g0)

= p3(g3 + G2:0)

(7.7.2)

204 CHAPTER 7. BINARY ADDITION

We define the pseudo generate function as

Hk−1:0 = gk−1 + Gk−2:0 (7.7.3)

then

Gk−1:0 = pk−1Hk−1:0 (7.7.4)

Note that the pseudo generate function, H, can be formed in a binary tree

similar to the standard generate function. The only difference is the indices

on the propagate function are one less than for the parallel prefix recursion.

For example the standard parallel prefix generate function is given by

G15:0 = G15:8 + P15:8G7:0

G7:0 = G7:4 + P7:4G3:0

G3:0 = G3:2 + P3:2G1:0

G1:0 = g1 + p1g0

(7.7.5)

whilst the pseudo generate function is given by

H15:0 = H15:8 + P14:7H7:0

H7:0 = H7:4 + P6:3H3:0

H3:0 = H3:2 + P2:1H1:0

H1:0 = g1 + p0g0

(7.7.6)

As with the parallel prefix adder, every level of the tree has 4 unit delays, as

it has 2 two input gates on the critical path.

7.7. LING ADDER 205

But one level of the tree can be simplified by applying the identity from

(7.7.1).

H1:0 = g1 + p0g0 = g1 + g0 (7.7.7)

Therefore one level of the binary tree has only 2 unit delays as it comprises

a single two input gate on the critical path.

Since pi−1 is factored out of the pseudo carry, it must be recombined when

computing the sum. However this can be written as follows, which removes

this calculation from the critical path.

si = ai ⊕ bi ⊕Gi−1:0

si = ai ⊕ bi ⊕ pi−1Hi−1:0

=





ai ⊕ bi if Hi−1:0 = 0

ai ⊕ bi ⊕ pi−1 if Hi−1:0 = 1

= Hi−1:0xi + Hi−1:0yi

(7.7.8)

where xi = ai ⊕ bi and yi = ai ⊕ bi ⊕ pi−1.

Therefore the computation of the final sum can still be done in 4 unit delays

despite having to recombine the pi−1 term with the pseudo carry.

Hence the delay complexity for a Ling adder is

L(n) = 2 + 2 + 4(dlog2 ne − 1) + 4 = 4dlog2 ne+ 4 (7.7.9)

206 CHAPTER 7. BINARY ADDITION

For example

L(64) = 28 (7.7.10)

As with parallel prefix, high radix Ling adders have no advantage over radix-2

Ling adders.

7.8 Generalisation of Ling Adder

It is possible to further generalise the Ling adder in order to reduce the

complexity of high radix adder architectures [2, 5].

Recall the identity (7.7.1)

pigi = (ai + bi)aibi = aiaibi + biaibi = aibi + aibi = aibi = gi (7.8.1)

The obvious generalisation of this identity does not hold since, for example

P1:0G1:0 6= G1:0 (7.8.2)

Therefore we aim to establish a new function which does satisfy an identity

analogous to identity (7.7.1).

7.8.1 Generalised Ling Fundamentals

In this subsection, we introduce the generalised Ling pseudo generate and

hyper propagate functions, then prove some identities relating to these func-

7.8. GENERALISATION OF LING ADDER 207

tions.

We start by defining a function D which satisfies an identity analogous to

identity (7.7.1).

Definition 7.8.1. Define the following function

Dk−1:0 = Gk−1:0 + Pk−1:0 (7.8.3)

Lemma 7.8.2. The function Dk−1:0 satisfies the following identity

Dk−1:0 = Gk−1:1 + Pk−1:0 (7.8.4)

Proof.

Dk−1:0 = Gk−1:1 + Pk−1:1g0 + Pk−1:0

= Gk−1:1 + Pk−1:1g0 + Pk−1:1p0

= Gk−1:1 + Pk−1:1(g0 + p0)

= Gk−1:1 + Pk−1:1p0

= Gk−1:1 + Pk−1:0

(7.8.5)

Lemma 7.8.3. The following identity holds for the function D

Dk−1:0Gk−1:0 = Gk−1:0 (7.8.6)

208 CHAPTER 7. BINARY ADDITION

Proof.

Dk−1:0Gk−1:0 = (Gk−1:1 + Pk−1:0)Gk−1:0

= (Gk−1:1 + Pk−1:1p0)(Gk−1:1 + Pk−1:1g0)

= Gk−1:1 + Gk−1:1Pk−1:1(p0 + g0) + Pk−1:1p0g0

= Gk−1:1 + Gk−1:1Pk−1:1p0 + Pk−1:1g0

= Gk−1:1 + Gk−1:1Pk−1:0 + Pk−1:1g0

= Gk−1:1(1 + Pk−1:0) + Pk−1:1g0

= Gk−1:1 + Pk−1:1g0

= Gk−1:0

(7.8.7)

We now have a function analogous to (7.7.1). We can now show that the

function D can be used interchangeably with the propagate function P .

Lemma 7.8.4. D satisfies the following identity

G1 + D1G0 = G1 + P1G0 (7.8.8)

Therefore D can be used as an alternative propagate function to P .

Proof.

G1 + D1G0 = G1 + (G1 + P1)G0

= G1 + G1G0 + P1G0

= G1(1 + G0) + P1G0

= G1 + P1G0

(7.8.9)

7.8. GENERALISATION OF LING ADDER 209

Note also that the function D has a decomposition which is analogous to the

generate function G.

Lemma 7.8.5. Function D has the following decomposition

D = G1 + P1D0 (7.8.10)

Proof.

D = G + P

= (G1 + P1G0) + (P1P0)

= G1 + P1(G0 + P0)

= G1 + P1D0

(7.8.11)

Now we introduce another function B.

Definition 7.8.6. Define the following function

Bk−1:0 = gk−1 + . . . + g0 (7.8.12)

The function B satisfies the following identity.

Lemma 7.8.7. The generate function can be factorised as follows

Dk−1:0Bk−1:0 = Gk−1:0 (7.8.13)

210 CHAPTER 7. BINARY ADDITION

Proof. True for k = 1 since

D0:0B0:0 = (G0:0 + P0:0)B0:0 = (g0 + p0)g0 = p0g0 = g0 = G0:0 (7.8.14)

Suppose Dk−2:0Bk−2:0 = Gk−2:0, then

Dk−1:0Bk−1:0 = (gk−1 + pk−1Dk−2:0)(gk−1 + Bk−2:0)

= gk−1 + gk−1Bk−2:0 + gk−1pk−1Dk−2:0 + pk−1Dk−2:0Bk−2:0

= gk−1(1 + Bk−2:0 + pk−1Dk−2:0) + pk−1Dk−2:0Bk−2:0

= gk−1 + pk−1Dk−2:0Bk−2:0

= gk−1 + pk−1Gk−2:0 (by assumption)

= Gk−1:0

(7.8.15)

Finally we have an identity involving both D and B.

Lemma 7.8.8. The D function can be factorised as follows

Dk−1:0 = Dk−1:k−m(Bk−1:k−m + Dk−m−1:0) (7.8.16)

7.8. GENERALISATION OF LING ADDER 211

Proof. Follows directly from the identities we proved above.

Dk−1:k−m(Bk−1:k−m + Dk−m−1:0)

= Dk−1:k−mBk−1:k−m + Dk−1:k−mDk−m−1:0

= Gk−1:k−m + Dk−1:k−mDk−m−1:0

= Gk−1:k−m + (Gk−1:k−m + Pk−1:k−m)Dk−m−1:0

= Gk−1:k−m(1 + Dk−m−1:0) + Pk−1:k−mDk−m−1:0

= Gk−1:k−m + Pk−1:k−mDk−m−1:0

= Dk−1:0

(7.8.17)

We are now ready to introduce the generalisation of the Ling pseudo generate

function (7.7.3).

Definition 7.8.9. Define the generalised pseudo generate function as

R
(m)
k−1:0 = Bk−1:k−m + Gk−m−1:0 (7.8.18)

For example

R
(2)
3:0 = B3:2 + G1:0 = g3 + g2 + g1 + p1g0 (7.8.19)

Remark 7.8.10. Note that the Ling pseudo generate function (7.7.3) is a

special case of the generalised pseudo generate function

R
(1)
k−1:0 = Hk−1:0 (7.8.20)

212 CHAPTER 7. BINARY ADDITION

Lemma 7.8.11. The generate function can be factorised in terms of the

generalised pseudo generate function as follows

Gk−1:0 = Dk−1:k−mR
(m)
k−1:0

(7.8.21)

Proof.

Dk−1:k−mR
(m)
k−1:0 = Dk−1:k−m(Bk−1:k−m + Gk−m−1:0)

= Dk−1:k−mBk−1:k−m + Dk−1:k−mGk−m−1:0

= Gk−1:k−m + Dk−1:k−mGk−m−1:0

= Gk−1:k−m + Pk−1:k−mGk−m−1:0

= Gk−1:0

(7.8.22)

We also require a generalisation of the propagate function.

Definition 7.8.12. Define the generalised hyper propagate function as

Q
(m)
k−1:0 = Pk−1:k−mDk−m−1:0 (7.8.23)

For example

Q
(2)
3:0 = P3:2D1:0 = p3 + p2 + g1 + p1p0 (7.8.24)

Remark 7.8.13. Note that the standard propagate function (7.5.6) is a

special case of the generalised pseudo generate function

Q
(0)
k−1:0 = Pk−1:0 (7.8.25)

7.8. GENERALISATION OF LING ADDER 213

Remark 7.8.14. Note also that the generalised pseudo generate function

Q(1) is also equivalent to the standard propagate function (7.5.6). This ex-

plains why Ling adders use the regular propagate function.

Q
(1)
k−1:0 = Pk−1:1D0:0 = Pk−1:1p0 = Pk−1:0 (7.8.26)

Lemma 7.8.15. The D function can be factorisation in terms of the gener-

alised pseudo generate function as follows

Dk−1:0 = Gk−1:k−m + Q
(m)
k−1:0

(7.8.27)

Proof.

Gk−1:k−m + Q
(m)
k−1:0 = Gk−1:k−m + Pk−1:k−mDk−m−1:0

= Gk−1:k−m + Pk−1:k−m(Gk−m−1:0 + Pk−m−1:0)

= (Gk−1:k−m + Pk−1:k−mGk−m−1:0) + (Pk−1:k−mPk−m−1:0)

= Gk−1:0 + Pk−1:0

= Dk−1:0

(7.8.28)

214 CHAPTER 7. BINARY ADDITION

7.8.2 Modified Pseudo Generate and Hyper Propagate

Functions

The pseudo generate and hyper propagate functions introduced in the pre-

vious section, are the simplest functions which satisfy the desired criteria.

However, it may be useful to introduce redundant terms into the pseudo

generate and hyper propagate functions to facilitate a more regular adder

structure.

Therefore we introduce a class of modified pseudo generate and modified

hyper propagate functions. But first we define inclusion for binary functions.

Definition 7.8.16. A binary function Y is included in a binary function Z

if Y = 1⇒ Z = 1, and we denote this Y ⊆ Z.

Definition 7.8.17. Define the modified pseudo generate function to be

R̃
(m)
k−1:0 = Xk−1:k−m + Gk−m−1:0 (7.8.29)

where Xk−1:k−m is any function such that

Gk−1:k−m ⊆ Xk−1:k−m ⊆ Bk−1:k−m (7.8.30)

Definition 7.8.18. Define the modified hyper propagate function to be

Q̃
(m)
k−1:0 = Yk−1:k−mDk−m−1:0 (7.8.31)

7.8. GENERALISATION OF LING ADDER 215

where Yk−1:k−m is any function such that

Pk−1:k−m ⊆ Yk−1:k−m ⊆ Dk−1:k−m (7.8.32)

We now show that the modified pseudo generate and hyper propagate func-

tions can be used as a direct replacement for the regular pseudo generate and

hyper propagate functions.

Lemma 7.8.19. The generate function can be factorised in terms of the

modified pseudo generate function as follows

Gk−1:0 = Dk−1:k−mR̃
(m)
k−1:0

(7.8.33)

Proof. Note that in the following proof, we use simplified notation for the

function ranges

D1(G1 + G0) ⊆ D1R̃ ⊆ D1(B1 + G0)

D1G1 + D1G0 ⊆ D1R̃ ⊆ D1B1 + D1G0

G1 + D1G0 ⊆ D1R̃ ⊆ G1 + D1G0

G ⊆ D1R̃ ⊆ G

(7.8.34)

Lemma 7.8.20. The D function can be factorised in terms of the modified

pseudo generate function as follows

Dk−1:0 = Gk−1:k−m + Q̃
(m)
k−1:0

(7.8.35)

216 CHAPTER 7. BINARY ADDITION

Proof. Note that in the following proof, we use simplified notation for the

function ranges

G1 + P1D0 ⊆ G1 + Q̃ ⊆ G1 + D1D0

G1 + P1D0 ⊆ G1 + Q̃ ⊆ G1 + (G1 + P1)D0

G1 + P1D0 ⊆ G1 + Q̃ ⊆ G1(1 + D0) + P1D0

G1 + P1D0 ⊆ G1 + Q̃ ⊆ G1 + P1D0

G1 + P1(G0 + P0) ⊆ G1 + Q̃ ⊆ G1 + P1(G0 + P0)

(G1 + P1G0) + (P1P0) ⊆ G1 + Q̃ ⊆ (G1 + P1G0) + (P1P0)

G + P ⊆ G1 + Q̃ ⊆ G + P

D ⊆ G1 + Q̃ ⊆ D

(7.8.36)

7.8.3 Generalised Ling Radix-3 Recursion

In this subsection, we establish a radix-3 recursion for both the generalised

Ling pseudo generate and hyper propagate functions.

Theorem 7.8.21. The pseudo generate function can be generated using the

following recurrence relation.

R
(3k+1−1

2
)

3k+1−1:0
= B3k+1−1:2·3k + R

(3k−1
2

)

2·3k−1:3k + Q
(3k+1

2
)

3k+1−1
2

: 3
k+1
2

R
(3k−1

2
)

3k−1:0
(7.8.37)

7.8. GENERALISATION OF LING ADDER 217

Proof. First check for k = 0.

B3k+1−1:2·3k + R
(3k−1

2
)

2·3k−1:3k + Q
(3k+1

2
)

3k+1−1
2

: 3
k+1
2

R
(3k−1

2
)

3k−1:0

= B2:2 + R
(0)
1:1 + Q

(1)
1:1R

(0)
0:0

= g2 + g1 + p1g0

= R
(1)
2:0

= R
(3k+1−1

2
)

3k+1−1:0

(7.8.38)

Now prove the general case. We start by factorising the middle R term from

definition (7.8.18) and the Q term from definition (7.8.23).

T = B3k+1−1:2·3k + R
(3k−1

2
)

2·3k−1:3k + Q
(3k+1

2
)

3k+1−1
2

: 3
k+1
2

R
(3k−1

2
)

3k−1:0

= B3k+1−1:2·3k +
(
B

2·3k−1: 3
k+1+1

2

+ G 3k+1−1
2

:3k

)

+
(
P 3k+1−1

2
:3kD3k−1: 3

k+1
2

)
R

(3k−1
2

)

3k−1:0

(7.8.39)

We can then apply the identity from (7.8.21), followed by the regular parallel

prefix recursion.

T =
(
B3k+1−1:2·3k + B

2·3k−1: 3
k+1+1

2

)
+ G 3k+1−1

2
:3k

+ P 3k+1−1
2

:3k

(
D

3k−1: 3
k+1
2

R
(3k−1

2
)

3k−1:0

) (7.8.40)

followed by the regular parallel prefix recursion, which gives us the result as

218 CHAPTER 7. BINARY ADDITION

required.

T = B
3k+1−1: 3

k+1+1
2

+ G 3k+1−1
2

:3k + P 3k+1−1
2

:3kG3k−1:0

= B
3k+1−1: 3

k+1+1
2

+ G 3k+1−1
2

:0

= R
(3k+1−1

2
)

3k+1−1:0

(7.8.41)

Note that the above recursion involves B terms, which are not formed by the

general recursion. However, since G ⊆ R ⊆ B we can replace the B terms

with R terms to form a modified pseudo generate function, as this makes the

recursion more regular.

Corollary 7.8.22. The modified pseudo generate function can be generated

using the following recurrence relation.

R̃
(3k+1−1

2
)

3k+1−1:0
= R

(3k−1
2

)

3k+1−1:2·3k + R
(3k−1

2
)

2·3k−1:3k + Q
(3k+1

2
)

3k+1−1
2

: 3
k+1
2

R
(3k−1

2
)

3k−1:0
(7.8.42)

We must also determine a recurrence relation for the hyper propagate func-

tion.

Theorem 7.8.23. The hyper propagate function can be generated using the

following recurrence relation.

Q
(3k+1+1

2
)

3k+1−1:0
= P3k+1−1:2·3kQ

(3k+1
2

)

2·3k−1:3k

(
R

(3k−1
2

)

3k+1−1
2

−1: 3
k−1
2

+ Q
(3k+1

2
)

3k−1:0

)
(7.8.43)

7.8. GENERALISATION OF LING ADDER 219

Proof. First check for k = 0.

P3k+1−1:2·3kQ
(3k+1

2
)

2·3k−1:3k

(
R

(3k−1
2

)

3k+1−1
2

−1: 3
k−1
2

+ Q
(3k+1

2
)

3k−1:0

)

= P2:2Q
(1)
1:1

(
R

(0)
0:0 + Q

(1)
0:0

)

= p2p1(g0 + p0)

= p2p1p0

= Q
(2)
2:0

= Q
(3k+1+1

2
)

3k+1−1:0

(7.8.44)

Now prove the general case. We start by factorising terms from their defini-

tions.

T = P3k+1−1:2·3kQ
(3k+1

2
)

2·3k−1:3k

(
R

(3k−1
2

)

3k+1−1
2

−1: 3
k−1
2

+ Q
(3k+1

2
)

3k−1:0

)

= P3k+1−1:2·3k

(
P

2·3k−1: 3
k+1−1

2

D 3k+1−1
2

−1:3k

)((
B 3k+1−1

2
−1:3k + G

3k−1: 3
k−1
2

)

+
(
P

3k−1: 3
k−1
2

D 3k−1
2
−1:0

))

(7.8.45)

We can then simplify as follows

T =
(
P3k+1−1:2·3kP

2·3k−1: 3
k+1−1

2

)
D 3k+1−1

2
−1:3k

(
B 3k+1−1

2
−1:3k

+
(
G

3k−1: 3
k−1
2

+ P
3k−1: 3

k−1
2

D 3k−1
2
−1:0

))

= P
3k+1−1: 3

k+1−1
2

D 3k+1−1
2

−1:3k

(
B 3k+1−1

2
−1:3k + D3k−1:0

)
(7.8.46)

220 CHAPTER 7. BINARY ADDITION

Now we can apply the identity (7.8.16) to obtain

T = P
3k+1−1: 3

k+1−1
2

D 3k+1−1
2

−1:0

= Q
(3k+1+1

2
)

3k+1−1:0

(7.8.47)

as required.

Again note that the above recursion involves P terms, which are not formed

by the general recursion. However, since P ⊆ Q ⊆ D we can replace the

P terms with Q terms to form a modified hyper propagate function, as this

makes the recursion more regular.

Corollary 7.8.24. The modified hyper propagate function can be generated

using the following recurrence relation.

Q̃
(3k+1+1

2
)

3k+1−1:0
= Q

(3k+1
2

)

3k+1−1:2·3kQ
(3k+1

2
)

2·3k−1:3k

(
R

(3k−1
2

)

3k+1−1
2

−1: 3
k−1
2

+ Q
(3k+1

2
)

3k−1:0

)
(7.8.48)

7.8.4 Generalised Ling Radix-3 Example

Let us consider the example of the 27-bit carry G26:0.

26 0123459 8 7 610111213141516171819202122232425

Figure 7.4: 27-bit Radix-3 Generalised Ling Carry.

7.8. GENERALISATION OF LING ADDER 221

At the first level of the adder we compute the bit level generate and propagate

signals for i = 0, . . . 26.

gi = aibi p = ai + bi (7.8.49)

At the second level of the adder, we compute the 3-bit group pseudo generate

and hyper propagate functions

R
(1)
2:0 = g2 + g1 + p1g0 Q

(2)
4:2 = p4p3p2

R
(1)
5:3 = g5 + g4 + p4g3 Q

(2)
7:5 = p7p6p5

R
(1)
8:6 = g8 + g7 + p7g6 Q

(2)
10:8 = p10p9p8

R
(1)
11:9 = g11 + g10 + p10g9 Q

(2)
13:11 = p13p12p11

R
(1)
14:12 = g14 + g13 + p13g12 Q

(2)
16:14 = p16p15p14

R
(1)
17:15 = g17 + g16 + p16g15 Q

(2)
19:17 = p19p18p17

R
(1)
20:18 = g20 + g19 + p19g18 Q

(2)
22:20 = p22p21p20

R
(1)
23:21 = g23 + g22 + p22g21 Q

(2)
25:23 = p25p24p23

R
(1)
26:24 = g26 + g25 + p25g24

(7.8.50)

These are combined at the third level of the adder to produce 9-bit group

222 CHAPTER 7. BINARY ADDITION

pseudo generate and hyper propagate functions

R
(4)
8:0 = R

(1)
8:6 + R

(1)
5:3 + Q

(2)
4:2R

(1)
2:0

R
(4)
17:9 = R

(1)
17:15 + R

(1)
14:12 + Q

(2)
13:11R

(1)
11:9

R
(4)
26:18 = R

(1)
26:24 + R

(1)
23:21 + Q

(2)
22:20R

(1)
20:18

Q
(5)
13:5 = Q

(2)
13:11Q

(2)
10:8

(
R

(1)
8:0 + Q

(2)
7:5

)

Q
(5)
22:14 = Q

(2)
22:20Q

(2)
19:17

(
R

(1)
17:9 + Q

(2)
16:14

)

D26:23 = p26

(
R

(1)
26:24 + Q

(2)
25:23

)

(7.8.51)

Then the forth level produces the whole pseudo generate function

R
(13)
26:0 = R

(4)
26:18 + R

(4)
17:9 + Q

(5)
13:5R

(4)
8:0

D26:14 = D26:23

(
R

(4)
26:18 + Q

(5)
22:14

) (7.8.52)

The complete carry G26:0 can be formed as

G26:0 = D26:14R
(13)
26:0

(7.8.53)

Note that when constructing a sum bit of an adder, we can use the same

technique as in (7.7.8) to move the above off the critical path.

7.8.5 Higher Radix Generalised Ling Recursions

As for the radix-3 case, we can construct recursions for other higher radix

implementations as well.

7.8. GENERALISATION OF LING ADDER 223

For example, the radix-4 recursion has the form

R = R3 + R2 + Q2R1 + Q2Q1R0

Q = Q3Q2Q1(R1 + Q0)

(7.8.54)

It is also possible to use mixed radix implementation. For example, exper-

iments have shown starting the first level with the standard radix-2 Ling

implementation, then using higher radix generalised Ling for subsequent lev-

els, yields an efficient implementation.

7.8.6 Generalised Ling Complexity

The critical path for each level of the radix-3 generalised Ling tree has the

form

R = R2 + R1 + Q1R0

Q = Q2Q1(R1 + Q0)

(7.8.55)

Each of which can be implemented with a critical path comprising 2 two

input gates in series, which means each level has 4 unit delays.

Therefore the delay complexity for a radix-3 generalised Ling adder is

GL3(n) = 2 + 4dlog3 ne+ 4 = 4dlog3 ne+ 6 (7.8.56)

Similarly, the critical path for each level of the radix-4 generalised Ling tree

has the form

R = R3 + R2 + Q2R1 + Q2Q1R0

Q = Q3Q2Q1(R1 + Q0)

(7.8.57)

224 CHAPTER 7. BINARY ADDITION

Each of which can be implemented with a critical path comprising 2 three

input gates in series, which means each level has 6 unit delays.

Therefore the delay complexity for a radix-4 generalised Ling adder is

GL4(n) = 2 + 6dlog4 ne+ 4 = 4dlog4 ne+ 6 (7.8.58)

For example, let us consider a 64-bit radix-4 generalised Ling carry.

1359 71113151719212325474951535557596163 193133353739414345 17

Figure 7.5: 64-bit Radix-4 Generalised Ling Carry.

By applying the above complexity formula we see that

GL4(64) = 24 (7.8.59)

7.9 Summary

Below is a comparison of the complexity of generalised Ling adders against

other state of the art adder implementations.

Radix Parallel Prefix Complexity 64-bit Example
2 G1 + P1G0 4dlog2 ne+ 6 30
3 G2 + P2G1 + P2P1G0 6dlog3 ne+ 6 30
4 G3 + P3G2 + P3P2G1 + P3P2P1G0 8dlog4 ne+ 6 30

Table 7.1: Complexity of parallel prefix adders.

7.9. SUMMARY 225

Radix Ling (first level only) Complexity 64-bit Example

2 H1 + H0 4dlog2 ne+ 4 28
3 H2 + H1 + P1H0 6dlog3 ne+ 4 28
4 H3 + H2 + P2H1 + P2P1H0 8dlog4 ne+ 4 28

Table 7.2: Complexity of Ling adders. Logic simplification of the first level
is shown. Subsequent levels have the same structure as parallel prefix.

Radix Generalised Ling Complexity 64-bit Example

3 R2 + R1 + Q1R0 4dlog3 ne+ 6 22
4 R3 + R2 + Q2R1 + Q2Q1R0 6dlog4 ne+ 6 24

Table 7.3: Complexity of generalised Ling adders.

We see that generalised Ling implementations compare favourably against

both parallel prefix and Ling adders.

226 CHAPTER 7. BINARY ADDITION

Chapter 8

Conclusions

In this chapter we summarise the main results from the thesis.

8.1 Loop Elimination

Loop elimination provides a novel approach to increasing the throughput of

Viterbi detectors.

Figures 2.15 and 2.16 show how loop elimination can reduce the delay com-

plexity of a 3T implementation to that of a 2T implementation, and how loop

elimination can be recursively applied to a trellis, which allows the trellis to

be decoded in a logarithmic number of parallel steps.

227

228 CHAPTER 8. CONCLUSIONS

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

1

0

1

0

1

0

1

0

Output 0
Output 1

Maximum Likelihood Path

Figure 8.1: Loop elimination.

In section 2.4.1 we show that with loop elimination, the delay through a

Viterbi detector remains constant for detectors whose radix, T , exceeds the

constraint length, K.

This facilitates the implementation of detectors with high throughput, as the

delay per output decreases inverse proportionally with the radix, whilst the

standard implementation has an asymptotically constant delay per output.

Table 2.4 summarises the complexity of loop elimination.

Method Delay Delay/output Total area

Trellis unrolling T + 1 (T + 1)/T 2T+1 − 1
Loop elimination K K/T 2T + 2K−1 − 1

Table 8.1: Complexity comparison of trellis unrolling against loop elimina-
tion.

8.2. INVARIANTS 229

8.2 Invariants

Invariants provide a novel approach to reducing the complexity of Viterbi

detectors.

In particular, we show that the path metric difference between the two sides

of a loop is invariant in (2.6.6)

ai − bi = gi (8.2.1)

We also show in (2.6.12) that the four sides of two loops originating from the

same initial state, have the following invariance

ai + bi − ci − di =





±2g0 if i = k − 1

0 if i = 0, . . . , k − 2

(8.2.2)

and similarly in (2.6.15) we show that four sides of two loops originating from

the same final state, have the following invariance

ai + bi − ci − di =





±2gi−1 if i = 0, . . . , k − 2

0 if i = k − 1

(8.2.3)

In section 2.7.3, we consider how these invariants can be applied to a 4-state

3T Viterbi detector implementation. Table 2.16 summarises the reduction

in complexity when compared with a standard 2T implementation and a 3T

implementation that uses loop elimination alone.

230 CHAPTER 8. CONCLUSIONS

BMU Implementation Adders Multipliers Outputs/Cycle

2T 35 6 2
3T + Loops 88 9 3

3T + Loops + Invariants 47 9 3

Table 8.2: Complexity of various 4-state implementations.

8.3 Data Dependent Double Detectors

Double detectors are an innovative approach to data dependent Viterbi detec-

tors, whose performance closely matches the performance of auto-regressive

and data dependent noise predictive detectors, but without the practical

implementation drawbacks of high complexity or low throughput.

Figure 5.9 illustrates how the double detector replaces the noise predic-

tive loop found in DDNP detectors, with survivor information from a pre-

detector, thus avoiding the long feedback loop which results in low through-

put.

8.3. DATA DEPENDENT DOUBLE DETECTORS 231

Traceback Unit

Estimated Original Data

Main Detector

Branch Metrics

Pre-Detector

Survivor Information

Received Signal

Path Metrics Path MetricsBranch Metrics

Survivor Information

Add Compare Select Unit

Branch Metric Unit Branch Metric Unit

Add Compare Select Unit

Figure 8.2: Double detector replaces noise predictive loop with survivor in-
formation from pre-detector.

Figure 5.10 shows simulation results comparing the performance of the double

detector against auto-regressive and data dependent noise predictive detec-

tors.

232 CHAPTER 8. CONCLUSIONS

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16 17 18

B
E
R

SNR (dB)

T50=1.4 WN=10% PosJ=81% PhaJ=9% Channel : 100000 sectors

4 State White Noise MMSE Detector BER

256 State AR [1 3 3] L=3 D=5 Detector BER

16 State AR [1 3 3] L=2 D=2 Detector BER

4 State DDNP [1 3 3] L=3 D=5 Detector BER

8 State Double Detector [1 3 3] L=3 D=5 Detector BER

16 State Double Detector [1 3 3] L=3 D=5 Detector BER

Figure 8.3: Comparison of white noise MMSE detector, data dependent auto-
regressive detector, data dependent noise predictive detector and double de-
tector.

8.4 Cost Function

The cost function introduces a novel approach to analytically determine the

bit error rate of a Viterbi detector from only the statistics of the channel.

In particular, in equation (6.1.36) we show that the bit error rate can be well

approximated by the function

∑

{P∈P|P (j)=xj for j < t− L and j > t}
P 6=x

W (P)P(PM(P) ≤ PM(x) | x, r)

8.4. COST FUNCTION 233

where W (P) =
∣∣{j | P (j) 6= xj

}∣∣ is the weight of the path, and from (6.1.47)

that

P(PMerror < PMactual | x, r) =
1

2
erfc

(
E [PMerror − PMactual]√
Var [PMerror − PMactual]

)

Then in (6.1.63) and (6.1.64) we show that

E [PMerror − PMactual] Var [PMerror − PMactual]

can be expressed in terms of the following statistics of the channel

E [rt−i] E [xt−irt−j] E [rt−irt−j]

Figure 6.15 shows that at high SNR, the cost function accurately estimates

bit error rate

234 CHAPTER 8. CONCLUSIONS

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16

B
E
R

SNR (dB)

[1 3 3 1] AWGN Channel : [1 3 3 1] White Noise Detector : 100000 sectors

Experimental BER
Estimated BER

Figure 8.4: Estimated BER for white noise channel.

Finally we apply the cost function to the problem of determining ISI target

and equaliser coefficients that minimise bit error rate, and show that the cost

function out performs the MMSE criteria in figure 6.19.

8.5. BINARY ADDITION 235

1e-05

1e-04

1e-03

1e-02

1e-01

 8 9 10 11 12 13 14 15 16 17 18

B
E
R

SNR (dB)

T50=1.4 WN=10% PosJ=81% PhaJ=9% Erf Channel : White Noise Detector : 100000 sectors

MMSE

Minimise BER

Figure 8.5: Comparison of performance for 90% media noise 90% position
jitter erf channel.

8.5 Binary Addition

We introduce a novel approach to binary addition based on a generalisation

of the Ling prefix adder.

In (7.8.55) and (7.8.57) we show that the recursion for radix-3 and radix-4

implementations has the following form

R = R2 + R1 + Q1R0 Q = Q2Q1(R1 + Q0)

R = R3 + R2 + Q2R1 + Q2Q1R0 Q = Q3Q2Q1(R1 + Q0)

236 CHAPTER 8. CONCLUSIONS

and that the corresponding delay complexities (7.8.56) and (7.8.58)

GL3(n) = 4dlog3 ne+ 6

GL4(n) = 4dlog4 ne+ 6

compare favourably with the delay complexity of the standard Ling adder

(7.7.9).

L(n) = 4dlog2 ne+ 4

Related References

[1] S. Gratrix, R.C. Jackson, T. Parnell, and O. Zaboronski. Viterbi detector

for non-Markov recording channels. IEEE Trans. Mag., 44(1):198–206,

2008.

[2] R.C. Jackson and S. Talwar. High speed binary addition. In Signals,

Systems and Computers, 2004. Conference Record of the Thirty-Eighth

Asilomar Conference, volume 2, pages 1350–1353. IEEE, November 2004.

[3] N. Atkinson, R.C. Jackson, O. Zaboronski, T. Drane, and A. Vityaev.

Method and apparatus for an effective path metric computation in maxi-

mal likelihood decoding. U.S. Patent Application, app. 10/867,179, pub.

US 2005/0094748 A1, June 2004.

[4] S. Gratrix, R.C. Jackson, and O. Zaboronski. Likelihood detector appa-

ratus and method. U.S. Patent Application, app. 11/766,540, pub. US

2008/0002791 A1, June 2007.

[5] R.C. Jackson and S. Talwar. Logic circuit and method for carry and sum

generation and method of designing such a logic circuit. U.S. Patent, app.

10/714,408, pub. US 2004/0153490 A1, iss. 7,260,595, November 2003.

[6] S. Gratrix, R.C. Jackson, and O. Zaboronski. Likelihood detector for

data-dependent correlated noise. U.S. Patent Application, USP92288,

2007.

237

238 RELATED REFERENCES

Bibliography

[7] R.C. Jackson, D. Rumynin, and O. Zaboronski. An approach to

RAID-6 based on cyclic groups of a prime order. Submitted to

Applicable Algebra in Engineering, Communication and Computing,

[arXiv:cs/0611109v1].

[8] A.D. Viterbi. Error bounds for convolutional codes and an asymp-

totically optimum decoding algorithm. IEEE Trans. Inform. Theory,

13:260–269, 1967.

[9] G.D. Forney. The Viterbi algorithm. IEEE Trans. Inform. Theory,

61:268–278, 1973.

[10] H. Kobayashi and D.T. Tang. Application of partial-response channel

coding to magnetic recording systems. Bell J. Res. Develop., July 1970.

[11] A. Kavcic and A. Patapoutian. A signal-dependent auto-regressive chan-

nel model. IEEE Trans. Mag., 35(5):2316–2318, September 1999.

[12] T. Bayes. An essay towards solving a problem in the doctrine of chances.

Philosophical Transactions, 53:370–418, 1763.

[13] S. Sridharan and L.R. Carley. A 110 MHz 350 mW 0.6 µm cmos 16-state

generalized-target Viterbi detector for disk drive read channels. IEEE

Journal of Solid-State Circuits, 35(3):362–370, March 2000.

[14] P. Black and T. Meng. A 140 Mb/s 32-state radix-4 Viterbi decoder.

IEEE Journal of Solid-State Circuits, 27(12):1877–1885, December 1992.

239

240 BIBLIOGRAPHY

[15] A.K. Yeung and J.M. Rabaey. A 210 Mb/s radix-4 bit-level pipelined

Viterbi decoder. In IEEE International Solid-State Circuits Conference,

ISSCC’95, Digest of Technical Papers, pages 88–89, San Francisco, CA,

USA, February 1995.

[16] G. Fettweis, R. Karabed, P.H. Siegel, and H.K. Thapar. Reduced-

complexity Viterbi detector architectures for partial response signaling.

In Proceedings IEEE Global Telecommunications Conference, pages 559–

563, Singapore, November 1995.

[17] E. Yeo, S. Augsburger, W.R. Davis, and B. Nikolic. A 500 Mb/s

soft-output Viterbi decoder. IEEE Journal of Solid-State Circuits,

38(7):1234–1241, July 2003.

[18] A. Avizienis. Signed-digit representation for fast parallel arithmetic.

IRE Transactions on Computers, EC-10:389–400, September 1961.

[19] G. Fettweis and H. Meyer. Parallel Viterbi algorithm: breaking the

acs-bottleneck. IEEE Transactions on Communications, 37(8):785–790,

August 1989.

[20] G. Fettweis and H. Meyer. High-rate Viterbi processor: a systolic

array solution. IEEE Journal on Selected Areas in Communications,

8(8):1520–1534, October 1990.

[21] G. Fettweis and H. Meyer. High-speed parallel Viterbi decoding algo-

rithm and vlsi architecture. IEEE Communications Magazine, 29(8):46–

55, May 1991.

[22] IEEE Computer Society. IEEE standard for information technology,

Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications. IEEE, June 2007.

[23] IEEE Computer Society. IEEE standard for local and metropolitan area

networks, Part 16: Air Interface for Fixed Broadband Wireless Access

Systems. IEEE, October 2004.

BIBLIOGRAPHY 241

[24] J. Moon. Performance comparison of detection methods in magnetic

recording. IEEE Trans. Mag., 26(6):3155–3172, 1990.

[25] J. Moon. Discrete-time modeling of transition-noise-dominated channels

and study of detection performance. IEEE Trans. Mag., 27(6):4573–

4578, November 1991.

[26] N.R. Belk, P.K. George, and G.S. Mowry. Noise in high performance

thin-film longitudinal magnetic recording media. IEEE Trans. Mag.,

Mag-21(5):1350–1355, 1985.

[27] Z. Zhang, T.M. Duman, and E.M. Kurtas. Information rates of binary-

input intersymbol interference channels with signal-dependent media

noise. IEEE Trans. Mag., 39(1):599–607, January 2003.

[28] J. Moon and L.R. Carley. Detection performance in the presence of

transition noise. IEEE Trans. Mag., 26(5):2172–2174, September 1990.

[29] J. Moon, L.R. Carley, and R.R. Katti. Density dependence of noise in

thin metallic longitudinal media. J. Appl. Phys., 63:3254, 1988.

[30] T.C. Arnoldussen and H.C. Tong. Zigzag transition profiles, noise and

correlation statistics in highly oriented longitudinal film media. IEEE

Trans. Mag., 22:889, 1986.

[31] W. Ryan. Optimal code rates for concatenated codes on a PR4-equalized

magnetic recording channel. In CISS, 1999.

[32] J. Moon. SNR definition for magnetic recording channels with transition

noise. IEEE Trans. Mag., 36:3881, 2001.

[33] H.N. Bertram. Theory of magnetic recording, chapter 8. Cambridge

University Press, 1994.

[34] T.C. Arnoldussen and L.L. Nunnelley. Noise in digital magnetic record-

ing. World Scientific, 1992.

242 BIBLIOGRAPHY

[35] M.F. Erden, I. Ozgunes, E.M. Kurtas, and W. Eppler. General trans-

form filters in perpendicular recording architectures. IEEE Trans. Mag.,

38(5):2334–2336, September 2002.

[36] B. Valcu, T. Roscamp, and H.N. Bertram. Pulse shape, resolution,

and signal-to-noise ratio in perpendicular recording. IEEE Trans. Mag.,

38:288, 2002.

[37] G.D. Forney. Maximum-likelihood sequence estimation of digital se-

quences in the presence of intersymbol interference. IEEE Trans. In-

form. Theory, IT-18(3):363–378, 1972.

[38] P.R. Chevillat, E. Eleftheriou, and D. Maiwald. Noise-predictive partial-

response equalizers and applications. In Proceedings of ICC, pages 942–

947. IEEE, 1992.

[39] J.D. Coker, E. Eleftheriou, R.L. Galbraith, and W. Hirt. Noise-

predictive maximum likelihood (NPML) detection. IEEE Trans. Mag.,

34(1):110–117, 1998.

[40] J. Caroselli and J.K. Wolf. Applications of a new simulation model for

media noise limited magnetic recording channels. IEEE Trans. Mag.,

32(5):3917–3919, September 1996.

[41] H.N. Bertram. Theory of magnetic recording. Cambridge University

Press, 1994.

[42] T.R. Oenning and J. Moon. Modelling the Lorentzian magnetic record-

ing channel with transition noise. IEEE Trans. Mag., 37(1):583–591,

January 2001.

[43] J. Caroselli, S.A. Alteker, P. McEwen, and J.K. Wolf. Improved de-

tection for magnetic recording systems with media noise. IEEE Trans.

Mag., 33(5):2779–2781, 1997.

[44] A. Kavcic and J.M. Moura. The Viterbi algorithm and Markov noise

memory. IEEE Trans. Inform. Theory, 46(1):291–301, 2000.

BIBLIOGRAPHY 243

[45] J. Moon and J. Park. Pattern-dependent noise prediction in signal-

dependent noise. IEEE J. Select. Areas on Commn., 19(4):730–743,

2001.

[46] D.J.C. MacKay. Information Theory, Inference, and Learning Algo-

rithms, chapter 2, page 34. Cambridge University Press, 2003.

[47] J. Moon and W. Zeng. Equalization for maximum likelihood detectors.

IEEE Trans. Mag., 31(2):1083–1088, 1995.

[48] O.J. Bedrij. Carry select adder. IRE Trans., EC-11:340–346, June 1962.

[49] P.M. Kogge and H.S. Stone. A parallel algorithm for efficient solution

of a general class of recurrence equations. IEEE Trans. Computers,

C-22(8):786–793, August 1973.

[50] R.E. Ladner and M.J. Fischer. Parallel prefix computation. Journal of

ACM, 27(4):831–838, October 1980.

[51] H. Ling. High speed binary adder. IBM Journal of Research and Devel-

opment, 25(3):156–166, 1981.

[52] N. Burgess. New models of prefix adder topologies. Journal of VLSI

Signal Processing Systems, 40(1):125–141, May 2005.

[53] S. Knowles. A family of adders. In Proc. 14th IEEE Symp. on Computer

Arithmetic, pages 30–34, 1999.

[54] T. Han and D.A. Carlson. Fast area-efficient vlsi adders. In Proc. 8th

IEEE Symp. on Computer Arithmetic, May 1987 1999.

[55] R.P. Brent and H.T. Kung. A regular layout for parallel adders. IEEE

Trans. Computers, 31:260–264, 1982.

[56] A. Weinberger and J.L. Smith. A logic for high-speed addition. Nat.

Bur. Stand. Circ., 591:3–12, 1958.

[57] J. Sklansky. Conditional-sum addition logic. IRE Trans., EC-9:226–231,

June 1960.

